
Quantum Mechanical Description of “Simple” 1-D Systems

We will now apply the postulates of QM to some “simple” systems.

The results from these systems will help us understand the

methodology and the of interpretive nature of quantum mechanics.

We’ll start with stationary states for systems with Hamiltonians that

are time-independent.
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The time-independent Schrödinger equation applies:
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For now, we’ll only deal with a single particle in one-dimension.
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Not too common in practice, but the math is simple and the interpretive

value is very important.

one-dimension (x)

What changes between different physical systems is the Hamiltonian

operator and the boundary conditions of the problem.

The time-independent Schrödinger equation for a one-dimensional

system is
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These factors define the problem and therefore the resulting wave

functions for the particle.



A Particle in a One-Dimensional Box

This is quantum mechanical system is

used for introductory purposes.

In 3-Dimensions, it’s a box.

In one-dimension, we have a particle in a line bounded by

impenetrable walls. (It is still called a box though!)

L

No friction

It could serve as a crude model for an electron in a wire.



The Classical 

Mechanical Picture

Without actually solving the equations of motion, we would expect

that the lowest energy state of the system to be

V(x) = 0 inside box

when the particle is not moving.

Classically, the particle could assume any velocity and therefore we

would have a continuum of energy states with E  0.

The classical state can be solved in Hamilton’s formulation:
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V(x) =  outside box

E = 0

If we have a conservative system where the energy is constant, then

we assume the particle has perfectly elastic collisions with the walls.



The Quantum Mechanical Description

We’ll find that the quantum mechanical description has some

surprises.

If we want the QM description, what do we need?

From Postulate 1

The state of a quantum mechanical system is completely

specified by a function Ψ(x,y,z,t) that depends on the

coordinates of the particle and on time. This function is

called the wave function of the system.

We need to find the quantum mechanical wave function for a one-

dimensional system: Y(x,t)



How do we find or solve for the wave function?

The wave function of a system evolves in time according to

the time-dependent Schrödinger equation:
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From Postulate 5 we have

If the Hamiltonian operator is not time-dependent, then we can

apply the time-independent Schrödinger equation:
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V(x) = 0 inside box

V(x) =  outside box
Time-independent
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So, we need to solve Schrödinger’s time-independent equation for the

wave function:

In general, the Hamiltonian operator is different for each system.
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The Hamiltonian for a conservative system is given by:
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For a single particle in 1-dimension.



In the Hamiltonian, it is the potential that is different for each system.

The potential V(x)

L

V =  V = 
V = 0

X = 0 X = L

V(x) = 0     for 0 < x <  L

V(x) =  for     0  x and  x  L

Note:  V(x) is not finite valued or smooth! That’s ok (the QM postulates 

impose restrictions on the wave functions, not the potential!)



Note also:  This is a plot of the potential, NOT the box.  Recall 

that the box is 1-dimensional.

x = 0 x = L

V =  V = 

The above interpretation of the particle bouncing around in the

potential is incorrect.

The particle is restricted to move in one-dimension as depicted below.



We only have restrictions on (x). Recall for the first postulate we

have:

1. (x) must be a continuous function.

2. (x) must be bounded and single valued.

3.  (x) must be normalizable.
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We can use all of the above to help us solve for the appropriate

solutions:
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V(x) = 0      0 < x < L

V(x) =  0  x and   x  L

Since V(x) is discontinuous and piecewise, it is useful to solve for, or

at least to think about the solution, in a piecewise manner.

Just remember that the wave function must be continuous at the

boundaries (x = 0 and x = L)



Outside the box

• Qualitatively, the barrier is impenetrable, with an infinite potential.

V(x) =  0  x and x  L

From the Born interpretation of the wave function we have:

And hence:

||2 = * = 0 outside of the box.

(x) = 0 outside of the box.

L
V =  V = 

V = 0x = 0 x = L

• So the particle will require an infinite amount of energy to get out of

the box.

• We can therefore assume that there is a zero probability of finding

the particle outside of the box.
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A finite second derivative requires (x) = 0 as the only solution.

Starting from Schrödinger’s equation we can also arrive at this result.

(x) = 0 outside of the box.

(x) = 0 outside the box (x < 0  and x > L)



Inside the box
L

V =  V = 

V = 0x = 0 x = L
V(x) = 0      0< x <L
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This is an ordinary 2nd order differential equation.

We can rearrange this into a more ‘familiar’ DE form:
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The general solution of the differential equation is given by:
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Where A and B are constants to be determined.

Hint. Remember the boundary conditions:

The wave function must be zero at x = 0 and x = L.



The particle in a box wave function
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n = 1, 2, 3, ….

L is the length of the box
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• There is an infinite number of solutions (n = 1, 2, 3, …)



The Energy

)()(
d

d

2 2

22

xEx
xm

 


To find the wave function (x) we solved the time independent

Schrödinger equation, which is an eigenvalue equation. The energy

is the eigenvalue.

Typically, when you solve an eigenvalue equation, you get both the

eigenfunction and the eigenvalue.

Recall that we rearranged the above into a more ‘familiar’ DE

(differential equation) form:
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Also recall, in applying our 2nd boundary requirement we had:

nkL n = 1, 2, 3…

This gives us:
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And from before

Therefore, solving for En gives:
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The Particle in a Box - Wave Function and Energy
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• The energy is quantized. It can only have discrete values.

• n is called a quantum number.

• Quantization and quantum numbers appear naturally in quantum

mechanics by solving Schrödinger’s equation.

• There are quantum numbers for each degree of freedom of a

system.
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n = 1, 2, 3…

Lowest energy

solution, is called

the ground state.
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first excited state

second excited 

state

ground state

third excited state4
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2(x)

The Particle in a Box - Wave Function and Energy



wave 

function

probability

distribution 

function

• The wave function is positive 

and negative

• The probability distribution 

function is only positive

• excited state solutions have 

nodes where there is zero 

probability of finding the 

particle

• Nodes increase with energy
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Fe atoms are arranged in a square box to ‘corral’ 

surface electrons, like a 2D ‘particle-in-a-box’.

iron atoms on a copper surface

The resulting electron density has nodes



Particles in a Dot!



The Ground State

• Let’s look at the n = 1 solution, the ground state solution.

• Does the wave function satisfy all of our minimum requirements?

It is continuous, single valued, and finite valued

everywhere. We have already shown it can be normalized.

This means that the derivative of the wave function will have

discontinuities at x = 0 and x = L where our potential has discontinuities

at these points (changes from zero to infinity instantly)

• Notice that the wave function is smooth everywhere except at the

boundaries.

Recall this was a “loose” requirement.
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Zero-point energy
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• Consider the classical particle in a box.

Without actually solving the equations of motion, we would

expect that the lowest energy state of the system to be zero

with the particle not moving.

• The lowest energy quantum mechanical state has a non-zero energy

(even at absolute zero). There is no classical explanation for this!
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We will see zero-point energies frequently in quantum mechanics.

This is called the zero-point energy

There are common experimentally measurable effects that are due

to the quantum mechanical zero-point energy.

(x)

x = 0 x = L



The mysterious zero-point energy is a direct consequence 

of the Uncertainty Principle:  

xpx  h/4

The  particle is “somewhere” in the box, between x = 0 and 

x = L, so x is roughly L, the box width (but not zero!) 

If the the ground-state energy 

E1 = px1
2/(2m)

is zero, then the momentum px is exactly zero, in which 

case px = 0, violating the Uncertainty Principle.



• The energy of the ‘particle-in-a-box’ problem is all kinetic energy.
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• This is reasonable since our potential was zero inside of the box.

• The kinetic energy increases with

the number of nodes.

• The curvature of the wave function

is related to the kinetic energy.

• Qualitatively, the more nodes a

wave function has, the more curved

it is, and the higher the kinetic

energy.
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Obtaining Observables from the Wave Function

• The wave function for the particle in a box problem are real-valued

and relatively simple.

• This is a good opportunity to examine the mathematical machinery for

deriving measurable properties from quantum mechanical wave

functions.

Using the wave function, what is the probability of finding the

particle between x = 0 and x = L/2 (i.e. the first half of the box)?

)2sin(
4

1

2

1
d)(sin2 ax

a
xxax 

The integral given below will be useful:

Example:



What is the average momentum that we would measure for the

particle in a box?

Example:
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Aa (where Y is normalized)

Recall that the 2nd postulate gives us that for every observable there is

a corresponding operator in quantum mechanics:

Postulate 4, gives us that the average value of an observable is

determined from the expectation value:

In this case, notice that the momentum operator operating on Y

gives a cosine function, which is orthogonal to the wave function

(a sine function).



Average momentum of a particle in a box (notice that (x) is not 

an eigenfunction of the momentum operator):
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But the average squared momentum is not zero!
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Interpretation: The average momentum we measure is zero. As

expected, the particle is equally likely to be moving in either direction.

Important: This means the momentum does not have a fixed value.

Due to the probabilistic nature of quantum mechanics, in general, we

can’t foretell what the results of the individual measurements will be.

This is true even if we know what the exact wave function is.

But notice that <px
2> = n2h2/4L2 is not zero.

Also, the variance in the momentum is not zero:

2
px = <px

2>  <px>
2 = n2h2/4L2

However, we can tell what the average of the measure values is. This

average is given by the expectation value. (4th postulate)



The Spread in Our Measurements

The spread in our measurements about the mean value (expectation

value) is given by the variance 2, defined as:

Recall that the conventional measure of statistical spread is the

standard deviation . The above expression is derived directly from the

expression for the standard deviation,  in statistics.
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Exercise: Determine the variance in the measurements of the position

of the particle-in-a-box in the ground state.
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What is the variance in the measurement of the energy of a particle

in a box in the ground state?

Before we calculate this by brute force, let’s think about the situation

more closely.

The energy of the quantum mechanical particle in a box in the ground

state is given by the equation:
2

1 28

h
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If the system is really isolated, then the energy of the system should be

constant and we should always measure the same energy.

Indeed, the energy of the system is definite and we will find that

the variance is zero.
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Consider a property, a, whose corresponding operator is given by A. If

the wave function of the system happens to be an eigenfunction of the

operator A, then the variance in the measurement of that property is

zero. In other words, the property ‘a’ of that state is definite.

Summary

22 2 0a a a   If then

So <a2>  <a>2 = a2 – a2 = 0. Also, the value that will be

measured is the eigenvalue ‘a’.
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Correspondence Principle

Classical mechanics works very well for macroscopic systems, but

fails for microscopic bodies, such as electrons.

Quantum mechanics is valid for both the microscopic and

macroscopic.

The Correspondence Principle states that the behavior of quantum

mechanical systems reduces to that of classical systems in the limit

of large quantum numbers.

As one might expect, this occurs when we start dealing with

macroscopic lengths and masses.

This idea was first developed by Neils Bohr and is sometimes called

the Bohr Correspondence Principle.



4

3

2

1

|Y4(x)|2

|Y3(x)|2   

|Y2(x)|2

|Y1(x)|2

Y3(x)

Y1(x)

Y4(x)

Y2(x)

Consider the probability distribution function for the classical

particle in a box and compare this to the probability distribution

function as n  .



• as m   (mass), the energy spacings approach zero.

• as L   (length), the energy spacings approach zero.

For our particle in a box problem it is not difficult to show that as we

begin to deal with macroscopic masses or lengths we will be dealing

with large n quantum numbers.
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Thus, even at moderate temperatures (300 K), the system is most likely

to be in a highly excited state (very large n) where the spacings are

small.

• as n  , the local probability density |Y|2 is the same for all x.
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-electrons in Linear Conjugated Hydrocarbons

The one-dimensional particle-in-a-box is a very idealized system.

However, it acts as a crude model for -electrons in linear conjugated

hydrocarbons.

butadiene

octatetraene

For a molecule in the gas-phase (isolated), it would be difficult for the

electron to escape. Thus, an electron that is ‘delocalized’ in the

conjugated -system is in a situation similar to that of a particle in a box.

Although these polyenes are not linear, we can model -electrons with a

1-D particle in a box with the box length given by the sum of the C-C

bonds in the hydrocarbon.

hexatriene

V =  V = 

x = 0 x = L



Consider butadiene:

Butadiene has 4  electrons, occupying 2 orbitals (Pauli exclusion

principle). Thus in our model particle in a box the first 2 levels are

occupied.

Using our model of a 1-D particle in a box and the approximate C-C

single and double bond lengths given above, we have a box of length

4.24 Ǻ.

n = 1

n = 2

n= 3
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The energy required to excite the system to the first excited state is

given by:

n = 1

n = 2

n = 3

Using the mass of an electron me = 9.109 x 10-31

kg and the length of our box L = 4.24 x 10-10 m

V =  V = 

x = 0 x = L
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Experimentally, butadiene has an absorption band at 210 nm.

Using

Our particle in a box model gives 118 nm.

Our result is not great, but we have assumed the end of our box

corresponds to the position of the terminal carbon atoms. However,

one would expect that the electron should be able to go beyond the

position of the end nuclei.

If we use a slightly longer distance to account for

this, we will actually get a result that is in better

agreement with experiment.


