
A Free Particle in One-Dimension

For a particle bound in a box, we saw “non-classical” results:

 quantization of energy levels (E not continuous)

 zero-point energy

 nodes, or points where there is zero probability

of finding the particle, even though there is a

finite probability of finding the particle on either

side of the node!

We’ll now examine the quantum mechanical description of a

free particle.

From this description, we will see several important and practical

quantum mechanical effects that also defy every day common sense.



A Free Particle in One-Dimension

What is a “free” particle?

A free particle is one which is not confined in space as was the

particle in a box.

V(x) = 0 - < x < 

- +

We will first consider the case where the particle experiences no

potential anywhere in space. More specifically:

Essentially, the particle is free to go anywhere in one-dimension

without any impediments.



If the potential is zero everywhere, our Hamiltonian operator for this

system is given by:

 < x < 

What is the Quantum Mechanical Description of the Free Particle?

As with the particle in a box, (or any system), we need to find the

wave function for the system.

Because our potential is not time-dependent, we can use

Schrödinger’s time independent equation to find the wave function.
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The Schrödinger equation for this problem is therefore:
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The general solution to the differential equation is:

This is the identical differential equation that we had to solve for the

particle in a box. Will we obtain the same wave function?



In full we have:
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What boundary conditions might we impose?

Let’s go back to the requirements for a well behaved wave function.

The wave function must be bound. In other words, it can’t go to an

infinite value as x tends towards plus or minus infinity.

WHY?

If we impose this condition, then the energy can only be positive or

zero.
0E

If E is negative, then the wave function becomes unbound.



For our free particle, the energy was all kinetic energy, which is

consistent with the conclusion that:

It turns out the energy of the free particle is not quantized. It can

assume any positive energy. The allowed energies of a free particle are

continuous just as they are in classical mechanics.

0E

Notice that the only restriction on the energy is that it is positive or zero.
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Physical interpretation of the Free Particle Wave Function

ikxikx BeAex )(

Let’s break up our wave function into two parts:

)(xA  )(xB 

We can further specify our wave function if we examine its physical

interpretation.

)(x

)(x

represents the particle moving in the + x direction

represents the particle moving in the - x direction

Show that + represents the particle moving in the +x direction.

(Hint: Show that px = –(ih/2)d +(x)/dx > 0)



Going back to our wave function, we still have two arbitrary constants.
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Because the particle is free, nothing can change the direction of the

particle. This would require a force and therefore a potential!

On physical grounds, this means that either A or B is zero.

So the particle can only be moving in one direction.

(It can be shown more rigorously that either A or B must be zero, but

our physical interpretation is good enough for now.)

Now we have our wave function for the free particle as:
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This now leaves us with one more unknown constant, either A or B.



Recall the Born interpretation of the wave function.

xxxxxxxP d)()(*d)(d)(
2

 

xAxeAxeAeA ikxikx ddd
202*  

So the probability of finding the particle between x and x + dx is

independent of x (the same everywhere).

The wave function of the free particle is not normalizable in the usual

sense (but this is not actually required for unbound particles)
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On physical grounds this might be expected because there is no

reason for the probability to go to zero as x goes to ±.

In other words, there is no point in space that is favored by the particle

over any other point in space.



If the wave function is not normalizable, then isn’t it an invalid

wave function according to our first postulate?

Yes, according to our original statement of the condition of

normalizability.

However, we should modify that condition to be a requirement only for

bound states. The free particle is an unbound state, a special case.

What are bound states? This is were the particle is localized by a

potential V(x). This does not apply to a free particle.

0)( xxas

NOTE: Be careful not to confuse the meaning of an bound/unbound

function and a bound/unbound state.

If the particle is localized, then the following should hold:

then



xAxxP dd)(
2



we say that the position of the particle is completely uncertain.

If the probability of finding the particle is equal for all x as given by:

This state of affairs is indeed very strange! But it is consistent with the

uncertainty principle

because the linear momentum of the particle is completely certain or

definite:
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therefore:

Thus, for the uncertainty condition to be satisfied, the particle’s

position is completely uncertain (infinite standard deviation in x).



The final constant A or B can only be further specified with some

initial conditions (e.g., how did we shoot the particle out into free

space).
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Initial Conditions Are Needed for Further Specify the Wave Function

So our free particle wave functions are:

For a particle moving in the positive x-direction:

For a particle moving in the negative x-direction:

- < x < 

where the energy E, is zero or positive and is NOT quantized.

- < x < 



Free Particle Hitting a Step Potential

Let’ examine a problem which exhibits distinctly non-classical results.

Consider a particle of mass m and energy E, coming from the left that

approaches the following step potential.

Note: it is equally valid to interpret this problem as a single particle

incident on the step potential or as a beam of non-interacting particles

incident on the potential. Sometimes the latter is useful for

interpretative proposes.

x
V(x) = 0

V(x) = V0

x = 0

Infinitely-wide

barrier

V



Classical Picture

• All particles with E < V0 will be reflected back.

• All particles with E > V0 will be pass through into zone II.

Quantum Mechanical Highlights

• Particles with E < V0 can penetrate the barrier and make it

into zone II.

• For particles with E > V0 there is a finite chance that they

will be reflected.

x = 0
V(x) = 0

V(x) = V0

x

Zone IIZone I



The Schrödinger equation for the problem can be divided into two

parts, one for each zone.

Here, because there is zero potential energy in this region, the

Hamiltonian is given by: 2 2
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ZONE I

x = 0
V(x) = 0

V(x) = V0

x

Zone IIZone I

notice we have subscripted 

our wave function for zone I
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Again the general solution is given by:
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This is the same as the free particle, so again we make the argument

that:

The amount of reflection can be given by the relative magnitudes of B

versus A. (the amplitudes)
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In this case, we cannot set A or B equal to zero because there is the

possibility of reflection of the particle at the barrier (then B is > 0).

0E



rearranging we have:
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Here, the potential is constant and equal to V0
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V(x>0) = V0
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the Schrödinger equation is then:



Again the general solution is given by:
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Because particles that make it into the barrier will only be traveling in

the positive x-direction, D = 0.
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Summary of Zone I and II Wave Functions
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Now we have the general form for our wave function in the two

regions:
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Due to the restriction that the wave function is continuous, single-

valued and smooth, we have continuity relationships that connect

the wave functions in the two regions.
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At the boundary (x = 0):

So we have two equations and three unknowns. We can only solve

for B and C in terms of A.

If the particle was confined to some region of space, then a

normalization condition would be our third condition. But since our

particle can be anywhere, we can not normalize the wave function.

Solve for B and C in terms of A using the continuity relationships.

In other words the wave functions (and slopes) have to match up at

the boundary.
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The constant A can be specified from the initial conditions (e.g., how

fast we shoot our particle at the potential barrier).

0E

where:



Consider the Case E < V0

When the energy of the incoming particle is less than the potential,

classically we expect all particles to reflect back. Let’s look at what

happens in the quantum mechanical description.
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The wave function in the barrier or Zone II is:
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If E < V0, then E – V0 is negative and we have a negative root in KII.
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What Happens to the Beam as it Encounters the Step Potential?

This largely depends on if the energy of the particles relative to V0.
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If we let

k is a positive and real valued.
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Because k is positive and real valued, inside the barrier we have an

exponentially decaying wave function.
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This is an example of quantum mechanical penetration into a

classically forbidden barrier.

This gives:

where

Zone IIZone I

representation of 

the real component 

of the wave 

function
x

x = 0



Notice that the larger k is, the steeper the decay. The larger the mass

(or larger V0 – E), the less penetration into the barrier is observed.
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For macroscopic particles (“large” m), barrier penetration is negligible

and for all practical purposes zero, no matter what the barrier is.

We can define a penetration depth as:

k
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1
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This is the depth at which the amplitude of the wave function will

diminish to a factor of e1 of its value at the edge of the barrier.

The penetration depth is proportional to k1 and therefore proportional

to m1/2. So the penetration depth will be negligible for large m.



Consider the case: E > V0

Non-Classical Reflection

Classical picture.

• All particles with E > V0 will pass through into zone II.

Zone I

x = 0
V(x) = 0

V(x) = V0

Zone II

• Classically,100% of the particles are transmitted into the barrier

region. 0% of the particles are reflected.

But according to quantum mechanics, there is a finite chance of

reflected particles, even if E > V0.



Here it can be useful to interpret our problem as a beam of non-

interacting particles incident on the potential.

The magnitudes of the constants A, B and C can be interpreted as

amplitudes of the beam of particles. For example, the larger |A| the

larger the amplitude the beam of particles. (More particles)
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x = 0
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Recall we could not specify A, B and C without the ‘initial’ conditions,

but we could specify their ratios.



can be defined as the reflection coefficient. It gives the fraction of

particles that are reflected by the barrier.

The ratio:
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Using our definitions for KI and KII,

It is simply a matter of algebra to derive an expression for the

reflection coefficient for E > V0:

Notice that the reflection coefficient R depends on the size of the V0

barrier relative to the energy E of the particles.
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Therefore, even when E > V0, there is a finite chance of reflection.

This is a non-classical result and it is sometimes called non-classical

reflection.

The amount of reflection decreases rapidly as E increases over V0.

Consider how the reflection coefficient changes as we vary E/V0.



The amount of transmission through the barrier is defined as:

T = 1  R

Notice that if E < V0, there is zero chance of transmission. This is

different from ‘penetration’.

Barrier penetration is NOT transmission (“keeps going to x = ”).
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Below the probability density is plotted for increasing energy of the

particle, but where E < V0.

E about half V0

The probability oscillates in zone I due to interference with the reflected

particles.

E close to V0

Notice that the penetration depth of the particle into the barrier increases

as the energy increases.

2
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Visualization of the Probabilities, Y*Y



E slightly higher than V0

The probability oscillates in zone I due to interference with the reflected

particles. In zone II, they are only moving in one direction so the

probability is constant. (remember the free particle with no barrier)

E much greater 

than V0

Notice that the amplitude in zone I diminishes as the energy increases.

This is because there is less non-classical reflection as E increases.
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E > V0



Plotted below are the real parts of the stationary state wave functions

of the particle incident on the barrier of infinite width at various

energies.

 Re ( )x

E about half V0

E close to V0

E < V0

Visualization of the Wave Functions



E > Vo

 Re ( )x

E slightly higher than V0

E much greater 

than V0

Although the probability is constant in zone II, the real component of the

wave function in the zone II still oscillates. Again consider the free

particle wave function with no barrier.

Notice that there is a change in the wave length of the oscillations.

Why does the wavelength in zone II decrease as the energy

increases? (Ignore the wave length in zone I)



Finite Width Barrier and Quantum Mechanical Tunneling

x = 0
V(x) = 0

V(x) = V0

x

Zone IIZone I Zone III

V(x) = 0
x = L

Classical picture.

• All particles with E < V0 will be reflected back.

• All particles with E > V0 will be pass through the barrier into

Zone III.

Consider a particle of mass m and energy E, coming from the left.



x = 0
V(x) = 0

V(x) = V0

x

Zone IIZone I Zone III

V(x)=0
x = L

The quantum mechanical treatment of this problem will show that

particles with energies less than the barrier can tunnel through to the

other side!

Quantum mechanical tunneling is important in many areas of

chemistry.

In other words when E < V0 there will be a finite transmission

coefficient through to zone III.

Finite Width Barrier and Quantum Mechanical Tunneling



electron



x

Zone II

x = 0
V(x) = 0

V(x)=V0

Zone I Zone III

V(x) = 0
x = L

We can again set up our Hamiltonian and Schrödinger equation in

each of the regions. We get wave functions for each zone given by:
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Again, by applying the continuity relationships, it’s just a matter of

algebra to derive analytic expressions for the transmission and reflection

coefficients. Let’s not worry about these derivations, but rather focus on

interpreting the results.

x = 0
V(x) = 0

V(x) = V0

x

Zone IIZone I Zone III

V(x) = 0
x = L

Non-classical reflection

The results are similar to that of the step-potential problem. But now,

even if E > V0, there is a finite chance of reflection at both boundaries.



Quantum Mechanical Tunneling

For this system, an expression for the transmission coefficient can be

derived that shows that tunneling can occur.
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When E < V0, there is a non-zero probability that particles will make it

all the way through the barrier, into zone III. This is called quantum

mechanical tunneling because particles are ‘observed’ to tunnel

through barriers they could not get through classically.

Once again the transmission coefficient depends on Vo and E, but

now also on the particle mass, m, and the width of the barrier, L.



Plot of the Tunneling probability as a Function of the kinetic energy of

the incoming particle relative to the barrier height, E/Vo for E < V0

As the energy E approaches the

barrier height, or E/V0 approaches 1,

the more tunneling we have.

The different plots show that

tunneling decreases as:

• as barrier length L increases

• as mass of the particle m
increases

• as the barrier height V0

increases
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Plot of the tunneling or transmission probability as a function of the

kinetic energy of the incoming particle relative to the barrier height,

E/V0 for E > V0

This is the same quantity as plotted

in the previous slide but now the

particles have E > V0.

The wild oscillations are a quantum

mechanical effect.

The peaks are called scattering

resonances.

As the energy becomes larger

relative to the barrier, the probability

that particles are transmitted

increases and there is less chance of

non-classical reflection
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Quantum Mechanical Tunneling and Chemistry

Quantum mechanical tunneling plays an important role in chemistry,

biology and physics.

For example, consider our barrier potential as a reaction profile for a

chemical reaction.

beta-hydride elimination

Ti+
R2Si

N

R

P

H

Ti+
R2Si

N

R

P

H

Tunneling is particularly important in proton transfer reactions.



Ti+
R2Si
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H

Ti+
R2Si

N

R

P

H

Reaction rates of proton transfer

reactions can be significantly enhanced

by tunneling!

However, proton transfer reactions are ubiquitous in biological

systems and enzymatic reactions.

For heavier nuclei, (C, N, O) tunneling 

is a much smaller effect – almost 

negligible. For macroscopic 

phenomena, it is completely negligible.



Scanning Tunneling Microscope

STM image of same surface at higher 

resolution.  Each spot corresponds to the 

surface of an individual atom.

images of Si(100) doped with molybdenum

Works on the principle of quantum mechanical tunneling. A very fine

metal tip is placed close to a surface. A small voltage difference is

applied across the tip and surface. Electrons tunnel through ‘gap’ or

the vacuum region between the tip and the surface. The tunneling

current gives a measure of the distance between the surface and the

tip. 0.01 nm vertical resolution! (1986 Physics Nobel Prize)



Scanning Tunneling Microscope (STM)



More on potential boxes, barriers and unbound states

All particles making up the system are

localized or “bound” to certain regions of

coordinate space.

System in a BOUND particle state

In all cases:

The energy of the system will be quantized

The probability of finding ANY bound particle will approach zero as x
approaches  infinity.

The wave functions for bound states are normalizable.
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  d*value finite

L
V =  V = 

V = 0x=0 x=L



System in an UNBOUND particle state

A particle in the system behaves like a free particle in the sense that it

is not localized in any particular region of coordinate space.

In all cases:

NOTE the confusing terminology. Although we are talking about a

UNBOUND state, the wave function is still a bound function of the

coordinates (i.e.,  does not go to infinity).

The energy of the system will correspond to a continuum of energy

levels. The energy is NOT quantized.

0
2


The wave function does not decay to zero as

We can’t normalize the wave function in the usual sense.

(Can be handled (normalize per unit length), but not in this course.)

V(x) = 0- +

x



Discrete, Continuous and Mixed Spectra of the Energy Levels

Occurs when

discrete energy 

levels

continuous energy 

levels

Mixed energy 

levels

Qualitatively, why do mixed energy levels occur?

V =  V = 

L

V = 0

V(x) = 0



Consider a Square Well Potential

V(x) = 0

V(x) = V0V(x) = V0

When E < V0, we will have bound

states.

The energy levels will be quantized.

There will be penetration into the non-

classical region.
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The wave function of these states is

normalizable, notice that:
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When E > V0, We Will Have Unbound States

The allowed energy levels will form a continuum.

There will be non-classical reflection at BOTH boundaries.

Notice the “speed up” of the particles in the well.
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Applications of Particle Beams?  

Vacuum Tube Electrical Circuits

Diode  (why Di- ?)

A hot metal cathode emits electrons 

in an evacuated glass tube.

Electrons are collected 

at the anode plate. 

Electrons flow one way,

from cathode to anode. 

Why? The anode is cold

And emits no electrons. 



Diode

Circuit diagram symbol for a diode:

Note that electrons flow from the cathode to the anode, 

opposite to the direction of the arrow! 

Why? Electrical engineers use the convention that current 

transports positive electric charge. 

Diodes are used as rectifiers in electronic circuits, 

turning alternating current (ac) into direct current (dc) 

flowing in one direction. 

Diodes act like check valves in pipeline flow.



Triode  Amplifier

Why Triode? 

A grid electrode is placed 

between the anode and 

cathode.

A negative grid  repels electrons, 

reduces electron flow from the 

cathode.

A positive grid attracts electrons, 

increases electron flow from the 

cathode.

Why Amplifier?

Small changes in a voltage applied to the grid electrode produce 

large changes in the number of electrons reaching the anode. 



The grid electrode acts like an adjustable gate valve in pipeline

flow, increasing or decreasing the current flow. 

The grid electrode provides an adjustable potential energy 

barrier V0(t) for the incoming particles.

Triode  Amplifier



Vacuum tube diodes, triodes and related devices work well, 

but are bulky, fragile, and require lots of power to operate.

Motivated the development of semiconductor diodes, 

solid-state devices with a junction between n-type and 

p-type doped semiconductors:

n-type (excess electrons)

such as Si (3p2) doped with As (4p3)

p-type (excess “holes”)

such as Si (3p2) doped with Ga (4p1)  

Semiconductor Diode



Semiconductor Diode

reverse  bias forward  bias

n-type+, p-type n-type-, p-type+

depletion zone with current flows

no charge carriers,

no current flows



FET (Field Effect Transistor) Amplifier

p-type FET

Small changes in the gate voltage produce large changes 

in the source-to-drain current (signal amplification).

Negative gate voltage (reverse bias) decreases the number of holes in the p-channel 

between source and drain electrodes, decreasing the current. 

Positive gate voltage (forward bias) increases the number of charge carriers between 

source and drain electrodes, increasing the current. 



Free Electron Laser

 high speed electrons in an undulating magnetic field

 tunable radiation source, from microwaves to X-rays



The “God” Particle

 Higgs boson

 elementary particle predicted by the Standard Model of physics

 produced experimentally by colliding beams of 4 TeV protons 

 discovered at the Large Hadron Collider (near Geneva)

 most expensive scientific instrument ever built (0 billion USD)

27-km ring of 

superconducting magnets



The “Oh My God” Particle

 it came from outer space

 an ultra-high energy (UHE) cosmic “ray”

 probably a proton

 HUGE  kinetic  energy  3  1020 eV

 equivalent to the kinetic energy of baseball moving at 100 km/hr

 speed 99.9999999999999999999995 % of the speed of light

Detected on 15 October 1991 in the 

night sky over Utah using the 

Fly’s Eye  camera network  

designed to detect fluorescence 

from the particle showers caused 

by incoming cosmic rays. 



Auger Cosmic Ray Observatory

 located in the high plains of Argentina, near the Andes Mountains

 designed to detect UHE cosmic rays

 24 fluorescent detection telescopes

 an array of 1600 water tanks with photomultiplier detectors

 3000 km2 detection area 


