
                                                    Chemistry 331 

                                              Introduction to Quantum Chemistry 

 

Instructor: Derek Leaist (dleaist@stfx.ca), Office PSC 3072, Lab PSC 3020 
 

Lectures:   Monday 11:15 am, Tuesday 1:15 pm, Thursday 12:15 pm (PSC 3046) 
 

Tutorials:  Wednesday 2:15 pm (AX 23A) 
 

─────────────────────────────────────────────────────────────────────── 

General Description:  Chemistry 331 introduces the basic ideas and applications of quantum theory, 

quantum chemistry, and statistical mechanics, emphasizing energy levels and how they are occupied. The 

postulates of quantum mechanics are developed and used to solve a variety of problems, including thermal 

radiation, confined particles, free particles, molecular vibration, molecular rotation, and atomic orbitals, 

with spectroscopic and other applications. The methodology and interpretive nature of quantum mechanics 

are stressed and the connection between theory and experiment is emphasized.  

 

Prerequisite:  Chemistry 232  

_____________________________________________________________________________________ 

 

Course Notes: pdf copies provided 

 

Textbook:  pdf copies of textbooks available  

 

Assignments:   About eight problem sets will be assigned to cover the course material.   

 

Term Tests:     Wednesday 13 October, 1:15 – 5:00 pm,  AX 23A 

   Wednesday 24 November, 2:15 – 5:00 pm, AX 23A 

 

Final Exam:    TBA (in the Christmas exam period) 

 

Office Hours:  Mon. 9:30 to 10:30 am, Tues. 11:30 am to 12:30 pm, Fri. 1:00 to 2:00 am 



Course Outline 

 

1. Brief Summary of Classical Mechanics:  Newton’s Laws.  Hamilton’s equations of 

motion. Other coordinate systems. Math review. 

 

2. The Need for Quantum Mechanics:  Failures of classical mechanics. Thermal radiation. 

Low-temperature heat capacities. Photoelectric effect. Atomic spectra. De Broglie 

relation. Electron diffraction. Wave nature of matter.  The uncertainty principle. 

 

3. Postulates of Quantum Mechanics:  Connection between classical and quantum 

mechanics.  The postulates or laws of quantum mechanics.  Stationary states. 

 

4. Some One-Dimensional Solutions:  The free particle problem.  Particle-in-a-box 

problem.  Beam-potential barrier problems.  Quantum mechanical tunneling.  

Applications. 

 

5. Important Theorems:  Commutators. Self-adjoint or Hermitian operators.  Quantum 

numbers. Examples. 

 

6. One-Dimensional Harmonic Oscillator:  Raising and lowering operators. Energy levels 

and wave functions.  Properties of the oscillator.  Transition selection rules.  Zero-point 

energy.  A model for a vibrating molecule.  Vibrational spectroscopy and diatomic 

molecules.  Other applications. 

 

7. Multi-Dimensional Problems: Three-dimensional free particle, particle-in-a-box, and 

harmonic oscillator problems.  Degenerate energy levels.  Applications. 

 

8. Multi-Dimensional Problems with Spherical Symmetry: Quantum numbers and 

general method for the solving the problems.  The angular parts of atomic orbitals.  The 

Harmonic Oscillator and the Rigid Rotator: Model for a rotating molecule; rotational 

spectroscopy of diatomic molecules; selection rules; bond lengths; vibrational-rotational 

spectra; electronic-vibrational-rotational spectra.  The Hydrogen Atom: The radial and 

angular parts of the wave functions for the one-electron atom and ion; energies; spectra 

and selection rules; average values of properties; total probability and radial distribution 

functions; radius of the atom; probability density plots; directed atomic orbitals. 



Course Notes available on the Chem 331 Moodle pages 

and at:  https://people.stfx.ca/dleaist/Chem331/

C331 Part 1. Introduction

C331 Part 2.     Thermal Radiation

C331 Part 3.      Math Review

C331 Part 4.      Classical Mechanics

C331 Part 5.      The Postulates of Quantum Mechanics

C331 Part 6.      Statistics

C331 Part 7.      One-Dimensional Systems

C331 Part 8.      Free Particles

C331 Part 9.      Rigid Rotors

C331 Part 10.     Harmonic Oscillators

C331 Part 11.     Multi-Dimensional Systems

C331 Part 12.    The Hydrogen Atom



Chemistry 331 Course Schedule (2021)

Classes:  Tuesday 07 September to Tuesday 07 December 

Tutorials: 15 September (Blocks HG/JH, Wednesdays 2:15 to 5:00 pm, AX 23A)

29 September

06 October

03 November

17 November

01 December

Term Tests: Wednesday 13 October,  2:15 pm to 5:00 pm,  AX 23A

Wednesday 24 November,  2:15 pm to 5:00 pm,  AX 23A

Final Exam: TBA (in the Christmas final exam period)

Course Mark

Final Exam 45 %

Term Tests 40 %

Assignments 15 %



Schaum’s Outline of Physical Chemistry 

2nd edition  ($25 Amazon.ca)

Clyde A. Metz

Chapters on quantum mechanics and spectroscopy, 

also thermodynamics, electrochemistry,  kinetics, 

and transport  properties.

concise summaries and worked problems.

Pdf versions of physical chemistry textbooks with chapters on quantum mechanics

and spectroscopy are available online. Examples:

Physical Chemistry, 4th Edition, Bawendi, Alberty and Silbey
http://www.slideshare.net/abahanaskasmui/physical-chemistry-4th-bawendi-alberty-silbey-library-pirate

Physical Chemistry, Moore
https://ia802302.us.archive.org/18/items/physicalchemistr029701mbp/physicalchemistr029701mmb.pdf

_____________________________________________________________

Physical Chemistry, 3rd Edition, Engel and Reid
https://www.academia.edu/people/search?utf8=%E2%9C%93&q=quantum+chemistry+Engel+Reid



Why do we need “quantum” mechanics? What’s wrong with classical

Newtonian mechanics?     An  important  chemical  example :

                   Hydrogen Atom 

                  electron and a proton

      ( ground-state diameter about 0.10 nm )

electron   -

proton     +

0.10 nm

    0.0001 nm
( subatomic particle)



                   Hydrogen Atom 

                  electron and a proton

electron   -
proton     +

    0.0002 nm ?
( subatomic particle)

Ok. But why doesn’t the electron spiral inwards and merge with the proton,

forming a subatomic particle (diameter << 0.10 nm for H atoms)?

positive and negative charges attract, so:



Why do we need “quantum” mechanics? What’s wrong with classical

Newtonian mechanics?     Another  important  chemical  example :

Orbitals Example:  1s for the ground state hydrogen atom

But what are orbitals?



Historical Development of Quantum Mechanics

At the end of the 1800s, many physicists believed that all principles of

physics had been discovered. There were “gaps”, such as the way

radiation interacts with matter, but these were felt to be “just details”.

“Classical ” Physics

•Newton’s Laws and classical mechanics

•Classical Thermodynamics

•Optics, electricity, magnetism

Key ideas of classical physics

•determinism – Everything about a system’s future is known 

by solving for r(t) from Newton’s second law.

•continuous observables

•no restriction on the energy of systems

•wave nature of light
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1801 Thomas Young provided convincing experimental evidence

for the wave nature of light. Diffraction and interference

patterns were observed.

interference pattern observed with 

Young’s double slit experiment

equivalent interference pattern 

from waves of water

1860s Maxwell developed four equations that unified the laws of

electricity and magnetism. The speed of an electromagnetic

wave predicted was the same as the speed of light that was

experimentally measured.

Light was concluded to be an electromagnetic wave.

The Nature of Light



By the beginning of the 1900s, several worrisome experimental

observations could not be explained by classical physics!

• The nature of molecules and chemical bonds were “gaps” in our

knowledge.

The Physics of Chemistry was not as Well Developed

• The existence of nuclei and electrons was known.

• Most of the periodic table had been developed (empirically).

• Catalogs of chemical reactions were available.

The ‘small gaps’ turned into fundamental problems with classical

physics and a radical new theory was needed to solve them.

A revolution was brewing!



1.  Blackbody Radiation - disobeyed classical                

electromagnetic theory

Five Key Observations that ‘Violated’ Classical Physics

One of the most important observed phenomena (from a historical

point of view) that made scientists question classical mechanics

was blackbody radiation.

What is blackbody radiation (also called thermal radiation)?

All materials:

As materials are heated to higher temperature, the radiation 

emitted shifts toward higher frequencies. 

• continually absorb and give off radiation

• in everyday experience, most radiation is emitted as infrared

red hot < white hot < blue hot           

(why?)

Several key experimental observations could not be explained by

classical physics led to the development of quantum mechanics.



An object is a blackbody if it absorbs all incident radiation but 

reflects none,  at all frequencies. The radiation emitted by a 

blackbody is called blackbody radiation. 

An excellent approximation to a true blackbody radiator is 

arranged by cutting a small hole in the wall of a hollow cavity. 

No radiation entering the hole from the outside escapes – it is 

all absorbed by the walls. The radiation leaking out of the hole 

is blackbody radiation (also called “cavity radiation”).

What   is  blackbody  (thermal) radiation?

Experiments showed that blackbody radiation depends only on the 

temperature of the object (but curiously, not on its composition! ).



A plot of the intensity of the blackbody

radiation as a function of the frequency of the

radiation.

Many attempts were made to derive expressions for the

blackbody spectrum measured in experiments.

Most resulted in expressions for the intensity that grew without

bound (the dashed curve) with increasing frequency.

In
te

n
si

ty
 (

a
rb

it
ra

r
y

 u
n

it
s)

classical expression

experimental

T3  >  T2  >  T1

frequency n / 1014 s-1

0.0             5.0          10.0         15.0

T2

T1

T3



In the classical treatment, radiation emitted by a blackbody was 

assumed to be due to oscillations of electrons (like electrons in an 

antenna that give off radiation).

In classical physics, these oscillating systems could have any 

energy and could radiate any frequency.

classical expression

experimental
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In 1900, Max Planck proposed a revolutionary idea:

the energy of the oscillators and the oscillation frequencies 

could only be integer multiples of certain values

But in classical physics, physical quantities are allowed to take on a

continuous values. “Quantization” was not initially accepted.

In other words, Planck proposed that the energy of the oscillators

was quantized and that only certain quantities of light energy could

be emitted: E1 = hn1, E2 = hn2, E3 = hn3, …

E = n h n

Planck’s Interpretation and the Idea of Quantization

n = 0, 1, 2, 3…

h a constant of proportionality

n radiation frequency



By assuming energy quantization, Planck derived expressions that

accurately reproduced the measured spectrum of blackbody

radiation using the constant h = 6.626 x 10−34 J s

Nobel Prize for

the discovery of

energy quanta.n/s
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T = 600 K

T = 300 K

energy density (joules per cubic meter)

of blackbody radiation at temperature T

( n)dn is the energy density of radiation

in the frequency range from n to n + dn

Planck's law for the distribution of the 
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classical (incorrect !) spectrum

of thermal radiation
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What’s  going  on ?

Notice:



Planck’s equation applies the “correction factor”
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to the classical expression for the thermal radiation spectrum. Why?

At temperature T, using the Boltzmann distribution, the probability of

oscillator energy nhv is proportional to e-nhv/kT and the average

energy of the quantized thermal oscillators is
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Important applications covered next week.

Interesting application: VantablackTM pigment

The darkest black substance ever synthesized.

Absorbs > 99.9 % of incident light.

Constructed from vertically aligned nanotubes.

Applications of Thermal Radiation ?



VantablackTM



2. Heat  Capacity  of  Monatomic  Crystals
In the early 1800s, French scientists Dulong and Petit measured 

heat capacities at constant volume (the change in energy per 

degree) for different materials.

CVm = (Um / T )V

They found CVm  25 J K−1 mol−1 for monatomic crystals, such as 

lead and other metals. This is easily understood using classical 

physics:  each atom oscillates in three dimensions (x, y, z) and each 

of these “degrees of freedom” according to the equipartition 

theorem has on average energy equivalent to kT. T is the 

temperature and k is Boltzmann’s constant (1.38066  10−23 J K−1).

Then for one mole UVm  NAvogadro3kT = 3RT for the molar energy 

and CVm = [(3RT)/ T ]V =  3R  = 24.9 J K−1 mol−1 for the molar 

heat capacity, in good agreement with Dulong and Petit’s

experiments.

a second “violation” of classical physics:



But …

As technology improved, it became possible to measure heat 

capacities at very low temperatures (approaching absolute zero,       

T = 0 K). For some reason, unknown at the time, the heat capacities 

of cold monatomic crystals dropped well below the predicted 3R

value. Something was literally:

freezing out atomic vibrations at low temperatures

Why  ?  …

Einstein’s Solution:  Quantized Atomic Vibrations

Following Planck’s success in accounting for blackbody radiation by 

allowing for only discrete “chunks” of radiation energy, Einstein 

provided a solution to the heat capacity problem by assuming that 

the allowed energies of atomic vibrations are not continuous, but 

can only have discrete quantized values:

0, hn, 2hn, 3hn, 4hn, … 

h is Planck’s constant, n is the fundamental vibrational frequency.



Einstein theory
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Einstein theory

temperature T / K
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Einstein’s calculations:

According to the recently discovered Boltzmann distribution law, 

Einstein reasoned the probability of finding an atom oscillating with 

energy  nhn is proportional to e−nhn/kT with n = 0, 1, 2, 3, …

So the average vibrational energy per atom (in three dimensions) is 

After some algebra, the average vibrational energy per mole is  

Limits? As an informative exercise, use Einstein’s equation to show:

1. as T → 0 (hv >>  kT),  Um → 0             (“new” quantum behavior)

2. as T →  (hv <<  kT),  Um → 3RT    (classical behavior)
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Einstein’s Expression for the Molar Heat Capacity

of a Monatomic Crystal

Taking the temperature derivative of Um gives 

with: CVm→ 0 as T → 0 (hv >> kT, all vibrations frozen out) 

CVm→ 3R as T →  (hv << kT, the classical limit)

Good agreement with experiment. 

And the value of  h from the heat capacities agreed with the 

value from  the analysis of blackbody radiation !
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3. Heat  Capacity  of  Ideal  Diatomic  Gases

For the heat capacities of diatomic gases, such as O2 and N2 in air, 

classical  mechanics  predicts:

CVm =  (Um / T)V

= 7R/2

=   29.1 J K−1 mol−1

But  experimentalists  measure:

CVm = 20.8 J K−1 mol−1  5R /2

Why ? Just as quantum vibrations of atoms are “frozen     

out” for cold crystals, diatomic molecules are not   

actively vibrating, except at very high temperatures. 

closely related ….



Equipartition Theory:    each energy mode 

contributes 

(classical) RT /2  to the molar energy 
for a diatomic ideal gas (from Chem 231/232 ):

x-velocity kinetic energy                    RT /2

y-velocity kinetic energy                    RT /2

z-velocity kinetic energy                    RT /2 

x-axis rotation                                   RT /2

y-axis rotation                                   RT /2

z-axis vibration kinetic energy          RT /2

z-axis vibration potential energy      RT /2

_____________________________________

Total energy per mole:         Um =  7RT /2

heat capacity prediction    CVm =  (Um/T )V

=  d(7RT/2)/dT

=  7R /2

7R/2 is the classical heat capacity prediction. But experiments give CVm = 5R/2. 

An R is missing!  Why?



Equipartition Theory:    each energy mode 

contributes 

(quantum) RT /2  to the molar energy 
for a diatomic ideal gas (from Chem 231/232 ):

x-velocity kinetic energy                    RT /2

y-velocity kinetic energy                    RT /2

z-velocity kinetic energy                    RT /2 

x-axis rotation                                   RT /2

y-axis rotation                                   RT /2

z-axis vibration kinetic energy          RT /2

z-axis vibration potential energy      RT /2

_____________________________________

Total energy per mole:         Um =  5RT /2

heat capacity prediction    CVm =  (Um/T )V

(no vibration contribution) =  d(5RT/2)/dT

=  5R /2

Quantum mechanical vibrational energy levels are too high in energy to be 

significantly occupied, except at very high temperatures.

frozen 

out



4. The Photoelectric Effect

Another phenomena of historic interest that “deviated” from classical

physics was the photoelectric effect.

Photoelectric effect:  The ejection of electrons from the surface of a 

metal by radiation.

Metal surface

e-

The classical picture of light is an oscillating electromagnetic wave.

Electrons at the surface oscillate with the changing electric field so

violently that they get knocked out or emitted.

This classical picture predicts the kinetic energy of the electrons should

increase as the amplitude of the radiation (intensity) increases.

kinetic energy of emitted 

electrons can be measured



The Photoelectric Effect

Curious Experimental Observations:

• The kinetic energy of the ejected electrons increases with the 

frequency of the light, not its intensity.

• No matter how intense the light of a given frequency, the energy 

of the ejected electrons remains the same.

Metal surface

e-

• For each metal, no electrons are ejected below a threshold 

frequency of the light specific to that metal.

• Increasing the light intensity increases the number of electrons 

ejected, but not their kinetic energy.



Einstein’s Interpretation of the Photoelectric Effect

Einstein made a major conceptual extension to

Planck’s concept of quantization, that radiation exists

as small packets of energy, now called photons.

The kinetic energy of the ejected electrons is the energy

of the incident photon minus the potential energy

(the work function f) holding the electron in the metal.

½mv2 = hv − f
The slope of the electron kinetic energy plotted against

frequency was in good agreement with Planck’s h value

from studies of blackbody radiation and heat capacities!

Metal surface

e-

The same constant  h  determined 

from completely different 

experiments! 

n /hchE ==

Nobel Prize for the  

explanation of the 

photoelectric effect.



incident radiation

evacuated quartz tube (why quartz ?)

collector  plate emitter  plate

volt  meter

amp meter

variable  dc  voltage 

Measurement  of  the  Photovoltaic  Effect

To measure the maximum kinetic energy of emitted photoelectrons, apply

a negative potential to stop all photoelectrons reaching the collector plate.

electrons

Apply a negative  “stopping”  potential to the collector plate to 

Measure the maximum kinetic energy of the emitted electrons.

-

-

-



Photoelectron Data for Sodium Metal 

Exercise :  show that the slope of the plot is h (Planck constant)



Important application of the photoelectric effect (one of many):

Photomultiplier Tubes

Ultrasensitive radiation detectors. Can detect single photons.



Some energy magnitudes and units

Using Einstein’s relation E = hn between the energy of a photon

and its frequency and the relation c = n between the frequency,

wavelength and speed of light (c = 2.99792458 x 108 m s−1), the

energy of one photon of yellow light (600 nm) is:

Electron Volt When dealing with energies of individual photons,

units of electron volts (eV) are commonly used (the energy

required to drop one electron through one volt or to raise one

proton through one volt):

1 eV = 1.602 x 10-19 J

E = hn = hc/ = 3 x 10-19 J

A photon of yellow light has an energy of about 2 eV.

An O2 bond energy is about 498 kJ/mol, which is about 5.2 eV.



5. Discrete Emission Spectra of the Hydrogen Atom

(and other atoms too)

Discrete line spectra of atoms also suggests energy quantization.

Balmer, Rydberg and others empirically derived a formula for the 

hydrogen line spectra:
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n1, n2 are integers with n2 > n1 and 

the Rydberg constant is

3.28803 x 1015 s−1

Hydrogen spectra controlled by two integers - further evidence for 

some kind of quantization.

(656 nm)
Series limit

(365 nm)(486 nm) (434 nm)



Bohr Model of the Hydrogen Atom

The classical picture of an electron and proton cannot explain 

the discrete (“line”) emission spectra.

Bohr came close. He assumed that the angular momentum of the 

electrons is quantized with allowed values mvr = nh/2

h/2  2(h/2)  3(h/2)  4(h/2) ...

The centrifugal force on the rotating electron is balanced by the 

attractive Coulombic force

mv2/r =   e2/(4e0)r
2 or  m2v2r2 =  (nh/2)2 = [me2/(4e0)]r

then  r is quantized too!

m = memp/(me + mp) ≈ me is the reduced mass of the proton and 

electron, v is the electron velocity, r is the distance between the 

proton and electron, and e0 is the vacuum permittivity.



Angular momentum. What is it?

Linear momentum for the motion of a particle in one direction is the 

product mv of the particle mass m and the particle velocity v.

A particle rotating at a distance r from a fixed center moves through 

the distance 2π r (one circumference) per revolution at the speed rω

where the ω is the angular velocity defined as the number of 

radians per second (2π radians per revolution).   So v = w r.

The kinetic energy of a particle is ½mv2 = ½ mr2ω2 suggesting the 

analogies:

m ↔ I between the mass m and moment of inertia I = mr2

v ↔ ω between linear and angular velocities

mv ↔ Iω between linear and angular momentum.

Angular momentum = Iw = mr2v/r = mvr



Assuming quantized angular momentum, the radii are r = n2a0

where a0 is the radius of a ground-state hydrogen atom (n = 1):

Bohr   radius: a0 = e0h
2/me2 = 52.9177 x 10−12 m

Adding the kinetic energy mv2/2 and the potential energy

–e2/(4e0)r from Coulomb’s law, Bohr derived the expression

En = −me4/(8n2h2e0
2) for the quantized energies of a hydrogen atom.

Using the energy change DE = En2 − En1 = hn for a hydrogen emission

line for a transition from n2 to n1 gave the frequencies:
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Except for the assumption of angular momentum quantization, the

Rydberg equation was derived with classical mechanics.



m = reduced mass of electron and proton = memp/(me + mp) ≈ me

me = electron mass (9.10939 x 10−31 kg)

mp = proton mass (1.67262 x 10−27 kg)

e = elementary charge (1.602177 x 10−19 C)

e0 = vacuum permittivity (8.85419 x 10−12 J C2 m−1)

h = Planck’s constant (6.62608 x 10−34 J s)

Using c = n and expressing frequencies in wavenumbers (−1 = n/c):

Bohr predicted (in amazing agreement with experiment):

n/c = (109,677 cm−1)(1/n1
2 - 1/n2

2) Hydrogen Emission Spectra

Experimentalists measured:                                             (n2 to n1)

n/c = (109,677.576 + or – 0.012 cm−1)(1/n1
2 - 1/n2

2)

Lyman series: n1 = 1, n2 = 2, 3, 4, … (ultraviolet)

Balmer series: n1 = 2, n2 = 3, 4, 5, … (visible) 

Paschen series: n1 = 3, n2 = 4, 5, 6, … (infrared) 

Pfund series: n1 = 4, n2 = 5, 6, 7, … (infrared)



de Broglie’s Wave Nature of Matter

A conceptual break through came from de Broglie in 1923.

By then the dual wave-particle nature of light was accepted by most 

leading physicists.

de Broglie extended and quantified the wave-particle duality of light 

to all particles (electrons, protons, baseballs).

Using special relativity, Einstein had derived an expression for the

momentum of a photon (even though it has no mass). Using a similar

line of reasoning, de Broglie argued that the wavelength  of any

particle is related to its momentum p = mv as follows:

h is Planck’s constant, again!
p

h

m

h
λ ==

v



For photons, which travel at the speed of light (c), combining

E = hn = hc/

and

E = mc2 (from the theory of relativity) 

gives

 = h/mc

de Broglie extension to particles of mass m moving at velocity v:

 = h/mv = h/p

And de Broglie’s concept of the wave nature of particles 

explained Bohr’s assumption that the angular momentum of 

electrons in H atoms are quantized! For an electron in a stable 

orbit around a proton, the orbit circumference is an integer multiple 

of the electron wavelength (2r = n) which gives quantized angular 

momentum:

mvr = nh/2 (Bohr’s assumption)



In 1925, experimental verification of the particle wave hypothesis came 

with electron diffraction experiments.

X-ray electron

X-ray and electron diffraction 

patterns through aluminum foil

Today, the wave property of matter is used routinely:

• electron microscopes (electron microscopes have shorter    

wavelengths and higher resolution than optical microscopes) 

• neutron diffraction     

Louis de Broglie, Nobel

Prize for the discovery of

the wave nature of electrons.



Wave-particle duality of matter is significant 

only for very small particle masses.

Particle

Mass

(kg)

Speed

(m/s)

Wavelength 

(1 pm = 0.001 nm)

Electron 

accelerated 

through 100 V

9.11x10-31 5.9x106 120 pm

(atomic and 

molecular distances)

Alpha particle 

ejected from 

radium

6.68x10-27 1.5x107 6.6x10-3 pm
(smaller than an atom)

Bullet 1.9x10-3 3.2x102 1.1x10-21 pm

(much smaller than a 

nucleus)

For macroscopic bodies, de Broglie wavelengths are completely

undetectable and of no practical consequence.

p

h

m

h
==

v




                   Hydrogen Atom 

                  electron and a proton

electron   -
proton     +

    0.0002 nm ?
( subatomic particle)

Why doesn’t the electron spiral inwards to merge with the proton,

forming a subatomic particle (diameter << 0.10 nm for H atoms)?

positive and negative charges attract:

Recall  the  important  question  about  the  existence  of  atoms:



electron   -

+     proton

0.10 nm

    0.0001 nm
( subatomic particle)

At typical energies ( 10 eV), the wavelength of an electron is  0.1 nm, 

much too large* to fit inside a proton.

Answer:  electrons  are  waves !

Huge Significance:   

• formation of atomic (1s, 2s, 2p, …) and molecular orbitals as “standing” waves  

• standing (resonance) waves have fixed energy → quantization of energy

• existence of atoms and molecules  (and  all  of  chemistry  ! )

*At  very high energies (millions of eV), electron wavelengths are much smaller, 

allowing electrons and protons to merge, as in the formation of neutron stars.



Wave-Particle Duality

Wave-particle duality refers to the fact that both light and matter can 

exhibit particle-like behavior or wave-like behavior depending on how 

we observe them.

In other words, their behavior depends on the nature of 

the experiment.

• photons can behave like particles in a photo-electric experiment

•electrons and other particles can exhibit a wave-like diffraction 

patterns



The density of an atomic cloud as the 

temperature is decreased (left to right):  wave-

like behavior 

Cooling Technology

Atoms are first cooled by lasers, then confined 

by a magnetic trap. 

Evaporative cooling is the last step.

Atoms can all be described by a single wave 

function!



2001 Nobel Prize in Physics
Eric A. Cornell

JILA and National Institute of Standards and Technology (NIST), Boulder, Colorado, USA,

Wolfgang Ketterle
Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA, and

Carl E. Wieman
JILA and University of Colorado, Boulder, Colorado, USA, 

Cooling rubidium atoms to less than 170 billionths of a degree

above absolute zero caused the individual atoms to condense

into a "superatom" behaving as a single entity

a few thousand atoms

"for the achievement of Bose-Einstein condensation in 

dilute gases of alkali atoms, and for early fundamental 

studies of the properties of the condensates".

Bose         Einstein



Heisenberg Uncertainty Principle
mid 1920s

The wave-particle duality of both light and matter leads to some very 

awkward results.

Consider the measurement of the position of an electron.

If we want to locate the electron within a distance Dx, we must use 

spatial resolution less than Dx.

For us to ‘see’ the electron, the photon must interact with the electron.

But the photon has a momentum associated with it.  

Thus, the very act of observing the electron leads to a change in its 

momentum.

One way to achieve this is to use light of wavelength   Dx.



h
p =



Heisenberg Uncertainty Principle

Classical mechanics:  no limitations on the accuracy of measurements

of position, velocity, momentum, … of particles

But wait  ! From quantum mechanics, particles  are  actually  waves  !

For wave motion (from Fourier integral methods):

 4

11
DDx

A Monochromatic Wave ( one fixed wavelength  ) Moving at Velocity  v

=Dx0
1

=D


so It’s everywhere !

Example:

( )







−= txAtx v

2
sin),(








Heisenberg Uncertainty Principle

Wave Packet:   A Superposition of N Different Waves

As the number N of  different wavelengths increases, D(1/) increases,  

so Dx decreases, causing the wave packet to be more localized in space, 

behaving more like a particle.

 4

11
DDx
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Heisenberg Uncertainty Principle

Delta Function  (superposition of   different waves)

In the limit of an infinite number of superimposed waves, D(1/) =  

and Dx =  0, so the “particle” is exactly located.

( )

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



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




 4

11
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Heisenberg Uncertainty Principle

Application to spectroscopy:

Transitions involving long-lived states (large Dt ) absorb or emit

nearly monochromatic radiation. 

Short-lived states produce broader ranges of frequencies.

 4

11
DDx

wave velocity  =  frequency   wavelength

v =  v  

 4

1v

v
DD

x
→

4

1
DD vt

divide and multiply by  v:



Heisenberg Uncertainty Principle

Recall that  h/ is the momentum p (the de Broglie relation):

 4

11
DDx

 4

hh
x DD

2


DD px

Multiply by  Planck constant  h:

4

h
px DD

Usually written as:

“h-bar” is the Planck constant divided by 2 :    
2

h




Heisenberg  Uncertainty  Principle

Developing this idea more fully, Werner Heisenberg showed that it is not

possible to simultaneously determine the exact position x and the

exact velocity v of a particle at the same time.

2
)v(


DD mx

The smaller the uncertainty Dx in the position of a particle, the larger the

uncertainty in the particle’s momentum Dp, and vice versa.

2

h
=

The uncertainty principle is incompatible with the deterministic classical

picture because we cannot specify exactly a particle’s position and

momentum simultaneously. We can only talk about probabilities.



e-

P+

But the uncertainty principle is important only on microscopic scales.

h = 6.626 x 10-34 J s (small! )

e.g. The uncertainty in the position of a baseball (145 g) thrown at 90

mph (40 m/s) if we measure the momentum (p = mv) to a millionth

of 1.0% (9 x 10-8 mph):

Dp = 5.6 x10−8 kg m/s

Dx = 9.4 x10−28 m

e.g. The uncertainty in the momentum if we locate an electron within an

atom so that the uncertainty in its position is 50 pm. (Bohr radius)

Then Dp = mDv = 1.3 x10−23

kg m/s

If Dx = 50 x10−12 m

Dv = 1 x 107 m/s

Relatively large!

(negligible, less than 

the radius of atomic 

nuclei ) 

355 10
2

x p x −D D  =



Historical Development of Quantum Mechanics

The stage was set for the development of a new theory to describe the

microscopic world of electrons and nuclei.

• quantization of energy states with Planck’s constant

• classical mechanics combined with ideas of quantization can

reproduce experimental observations.

• wave-particle duality of light and matter

• uncertainty principle starts to hint at probabilities (not classical

determinism)

• Boltzmann’s law is used to calculate the probabilities that

atoms and molecules are in allowed energy states



Modern Physics:
• theory of relativity

Theory of Relativity : Developed by Einstein in 1905, extended

classical mechanics to high velocities and astronomical distances.

• quantum mechanics

Quantum Mechanics : developed over decades by many scientists.

Deals with the microscopic at the level of atoms, electrons and smaller.

Quantum Mechanics has had a profound effect on our

understanding of chemistry. For example, covalent bonds

cannot be explained by classical physics. There is a sub-

discipline of chemistry and quantum mechanics called

‘quantum chemistry’.



Quantum Mechanics

Modern quantum mechanics was “discovered” in 1925.

In 1925, during Christmas holidays,

Schrödinger developed the Wave Equation

of quantum mechanics, starting from

de Broglie’s idea that particles are waves

Schrödinger’s formulation of quantum mechanics,

known as Wave Mechanics, replaced the “old”

quantum mechanics developed by Bohr.

In quantum chemistry, Schrödinger’s formulation of quantum

mechanics is most frequently used. In other applications,

especially nuclear physics, Heisenberg’s and other formulations

are used.

1933 Nobel Prize



There are other notable developments of quantum mechanics:

1925 – Heisenberg’s Matrix Quantum Mechanics ( 1932 Nobel Prize )

1929 – Dirac – Relativistic Quantum Mechanics (1933 Nobel Prize)

1941 – Feynman (1965 Nobel Prize) – Path Integral Formulation

of Quantum Mechanics

1926 – Schrödinger showed that Matrix and Wave Mechanics are

equivalent

Complicated, and not widely used in chemistry. Includes

antimatter. Spin is introduced as a natural variable, just like

time or position, but nothing is spinning!

Schrödinger’s and Heisenberg’s  treatments of quantum 

mechanics do not include Einstein’s theory of relativity.

Spin is included empirically in quantum chemistry.



“I think it’s safe to say that nobody really understands 

quantum mechanics.” Richard Feynman, 1965 Nobel 

Physics Prize for research on quantum electrodynamics.



1.  Introduction – Why is Quantum Mechanics Important for Understanding Chemistry?

Important topics and terminology:

thermal radiation (aka blackbody radiation, aka cavity radiation)

quantization Planck’s radiation law Planck constant h

h bar (h/2π) Boltzmann distribution law    Pi ∝ exp(−Ei/kT)

crystal vibrations low-temperature heat capacities photoelectric effect

Bohr model of the H atom linear momentum angular momentum

Bohr radius a0 continuous spectra     line spectra

Rydberg constant de Broglie wavelength h/p de Broglie relation

electron diffraction wave/particle duality

Heisenberg uncertainty principle


