
         

 

     Spectroscopy 
 

   using electromagnetic radiation to study atoms and molecules 

 
   one of the most important applications of quantum mechanics 

   uses radiation to determine atomic and molecular properties 

   provides molecular structures with extraordinary accuracy 

   monitors molecular events on timescales down to femtoseconds 

   many practical applications, including analytical chemistry 

 

 

The fundamental idea behind spectroscopy:  the energy of absorbed 

or emitted photons equals the difference between the quantum 

mechanical energy levels of atoms or molecules involved in the 

transition 

   hv  = hc/ = hc~   =  Efinal  Einitial 
 

                    But there are mysteries! 
 

Example     For an absorption transition with Efinal  Einitial = 6.00 eV, 

only a photon with energy hv = 6.00 eV is absorbed. Why? Couldn’t 

a 7.00 eV photon be absorbed and a 1.00 eV photon keep on going?  

 

Example     In many cases, photons with the correct energy  

Efinal  Einitial are never absorbed or emitted.  Why? 
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     Spectroscopic Selection Rules 
 

The energy levels of atoms and molecules decide the possible 

frequencies and wavelengths of absorbed and emitted radiation for 

atomic and molecular transitions.  

 

But what transitions are probable (most intense)? 

 

Electromagnetic radiation consists of propagating oscillations in the 

strengths of the electric and magnetic fields. 
   

 

 

 

 

 

Atoms and molecules are collections of positively-charged nuclei and 

negatively-charged electrons. The strength of the interaction between 

electromagnetic radiation and atoms or molecules is governed the 

electric dipole moment operator 
 

      

 

for the distribution of electrical charges qi at positions ir

.  

 

In SI units, an electric dipole is expressed in C m. In practice, the 

non-SI unit “Debye” is often used. 

 

   1 Debye = 1 D = 3.33564  1030 C m  
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Molecules with large permanent dipoles (i.e., large permanent 

separation of electrical charge, such as HCl) therefore interact 

relatively strongly with radiation  

 

 
    

               

  
+HCl 

 

producing the most intense (most probable) transitions. Molecules 

and atoms can also have fluctuating (transient) electric dipole 

moments that can interact with radiation, though more weakly.    

 

   Time-Dependent Perturbation Theory 
 

 Gives the spectroscopic selection rules that decide which 

transitions between quantum mechanical states are the most intense.  

 

Until now, we’ve looked at wave functions obtained by solving the 

time-independent Schrödinger equation for stationary states 

 
          

 

 

But transitions from one state to another are transient processes 

described by the time-dependent Schrödinger equation  
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To solve this equation for spectroscopic transitions, the time-

dependent part of the Hamiltonian operator 
)1(Ĥ is treated as a small 

perturbation superimposed on the time-independent Hamiltonian 
)0(Ĥ  for isolated atoms and molecules in stationary states. 

 

 

     

 

 

To solve the time-dependent Schrödinger equation  

 
 

     

 

it’s convenient to simplify the equations by assuming the electric 

field of the electromagnetic radiation oscillates in the z-direction 
 

 

      

 

v is the frequency of the radiation and E0z is the amplitude of the 

oscillations in the electric field. If z is the dipole moment of a 

molecule in the z-direction, the energy of interaction between the 

radiation and the molecule is  
 

 

    

 

If the molecule has no dipole moment in the z-direction, there is no 

interaction. 
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       Transitions from State 1 to State 2      
 

Consider possible transitions between stationary states 1 and 2 with 

wave functions 1 and 2 (note:  lower-case psis!) satisfying the 

time-independent Schrödinger equations 
 

        

 

     

 

 

 
)0(Ĥ for the stationary states does not depend on the time. As a result, 

it’s relatively easy to show (try it!) that the corresponding wave 

functions (upper-case psis!)  
 

    

       

 

 

     

 

are solutions of the time-dependent Schrödinger equations 
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Suppose that the system is initially in state 1, and the applied 

radiation field is “turned on” at time t = 0. The subsequent time-

evolution of the state of the molecule is then represented by the linear 

combinations of states 1 and 2 
 

 

    

 

with time-dependent mixing coefficients a1(t) and a2(t). The system is 

initially in state 1, so the initial conditions are 
 

     

 

 

Substituting the expression for ),( tr


  into 
 

 

     

 

  

gives the rather complicated expression 
 

 

  

 

 

 

 

 

 

But wait!  The first two terms and the last two terms in this equation 

cancel (why?) to give 
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This equation can be multiplied by 2* and integrated over the 

spatial coordinates  
 
 

   

 

 

 

 

 

 

1 and 2 are normalized and orthogonal (“orthonormal”), and so   
 

 

    

 

 

 

Substituting the spatial (i) and time-dependent ( /1e
tiE ) factors 

 

 

 

 

 

 

 

 

leads to further simplification  
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For weak perturbations, relatively few atoms or molecules make the 

transition out of the initial 1 state. The term proportional to a2(t) can 

therefore be neglected, at least initially, but not the term proportional 

to da2/dt  (why?),  to give 
 

 

 

 

 

 

The derivative da2/dt is especially interesting for spectroscopy. It 

gives the rate at which the population of molecules in state 2 builds 

up as a result of the transition from the initial state 1. 

 

The time-dependent perturbation Hamiltonian 
)1(Ĥ is proportional to 

the product of the electric dipole moment and the oscillating electric 

field (assumed for convenience to be along the z axis) 
  

 

   

 

 

 

So the expression for da2/dt  becomes 
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Defining the dipole transition moment between states 1 and 2    
 

 

 

   

 

 

gives 
 

   

 

 

 

 

Integrating between time t = 0 (when a2 for the amplitude of the final 

state is zero) and time t gives 
 

 

  

 

 

 

 



 

         Why bother to do all this?  

 

The results are fundamentally important for all spectroscopy: 

 

1.  For absorption spectroscopy (the final state has higher energy, 

E2 > E1) the important resonance denominator E2  E1  hv causes 

the second term to be relatively large determining a2(t) when  

 

    E2  E1  =  E  =   hv         absorption 
 

2.  For emission spectroscopy (the final state has lower energy, E2 <  

E1) the resonance denominator E2  E1 + hv causes the first term to 

be relatively large when  

 

    E1  E2  =  E  =   hv  emission 

 

This are the famous Bohr frequency conditions:   

 

When a system makes a transition from one state to another, it 

absorbs (or emits) a photon whose energy is equal to the 

difference in the energies of the two states. 

 

 3.  There is no absorption or emission if the dipole transition moment 

(decided by the stationary initial and final states) is zero. 

 

4.  The strength of the absorption is proportional to the dipole 

transition moment and the amplitude of the oscillating electric field.  
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Spectroscopic Selection Rules:  Diatomic Harmonic Oscillators 

 

To illustrate the selection rules for molecular vibration, time-

dependent perturbation theory is applied to the diatomic molecules.  

 

Recall that the harmonic oscillator wave functions are 
 

 

   
2/2/1 2

)()( x

nnn exHNx               n = 0, 1, 2, 3, … 
 

 

Nn is a normalization factor, x is the displacement of the positions of 

nuclei 1 and 2 from the equilibrium bond length R0 (stretched:  x > 0, 

compressed:  x < 0) 
 

        012 Rxxx   

 

and  is an abbreviation for  
 

   

              
2/ k  

 

k is the force constant (a measure of the “stiffness” of the bond),  is 

the reduced mass. 
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is the nth Hermite polynomial in  
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    Etc. 

 

The energy levels for a harmonic oscillator are equally spaced 
 

   

 

 

 

 

with En+1  En = E = (h/2)(k/)1/2. 

 

Experiments show that homonuclear diatomics, such as N2, have no 

vibrational spectra of significant intensity.  

 



For heteronuclear diatomics, such as CO, only one relatively intense 

vibrational frequency (the fundamental frequency) is observed: 
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Why?  Shouldn’t there be an infinite number of n  n transitions 1 

 2, 1  3, 1  4, …, 2  3, 2  4, 2  5, … with frequencies 

v0, 2v0, 3v0, 4v0, …?          

 

To see if transitions between different vibrational states are allowed 

(i.e., probable), time-dependent perturbation theory suggests that we 

look at the dipole transition moment (z)n,n between the different 

vibrational states 
 

 

     n    n      transition 
 

 

The degree of charge separation, and therefore the dipole moment 

along the bond axis (assumed to be the z-axis), can change as the 

bond length oscillates, so the dipole moment, in general, is a function 

of q (the deviation from the equilibrium bond length).  
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  Harmonic Oscillator Dipole Transition Moment 
 
 

        

 

     

 

 

 

 

 

The dipole moment can be expanded in a Taylor series about the 

value 0 at the equilibrium bond length (x = 0) 
 

 

    
x

x
xz

0

0
d

d
)( 













 

 

to give 

 

 

 

 

which is equivalent to the two integrals 
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Because wave functions for the harmonic oscillator are orthogonal, 

the first integral is zero. 

 

To evaluate the second integral, the recursion formula for Hermite 

polynomials 

 
 

                        

 

 

 

is helpful. Defining   =  1/2x gives  ( is the Greek letter xi, not to 

be confused with , the Greek letter zeta!) 
 

 

 

 

 

 

 

 

The Hermite polynomials are orthogonal, so the dipole transition 

moment is zero unless 

 
 

   n = n  1            or             n = n + 1                                         
 

 

 

 

 



 

This gives the important selection rule for the allowed transitions for 

the harmonic oscillator: 

 
 

        Rule  #1.  n  =   1 

 

 

In addition, the factor (d/dx)0 in the expression for the dipole 

transition moment gives 
 

 

  Rule  #2.    The dipole moment of the molecule  

     must vary during a vibration. 

 
 

Can you use the second rule to understand why homonuclear 

diatomics are infrared inactive? Does this mean homonuclear 

diatomics are not vibrating? 

 

Carbon dioxide (O=C=O) has no permanent dipole, but it is strongly 

infrared active. (Go ask the environmentalists). Why?  

 

Transitions with n = 2 (called overtones), forbidden by rule #1, 

are in fact routinely observed, though relatively weak in intensity. 

Can you explain this? Is quantum mechanics wrong?  

 

 

 

 



 

  Spectroscopic Selection Rules for Diatomic Rigid Rotors 
 

The time-dependent perturbation theory of spectroscopic transitions 

combined with the properties of spherical harmonics can be used to 

derive the selection rules for linear rigid rotors. These rules give the 

observed rotational spectra of diatomics and other molecules. 

 

The wave functions for rigid rotors are spherical harmonics ),( M

JY  
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with rotational energies  
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    J = 0, 1, 2, 3, … 

 

 I is the moment of inertia  
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Spherical harmonic functions are also eigenfunctions of the operator 

for the square of angular momentum 
 

 

  ),()1(),(ˆ 22  M
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and the operator for the z-component of the angular momentum 
 

 

  ),(),(ˆ  M

J

M

Jz MYYL   

 

 

with respective eigenvalues )1(2 JJ  and  M .  The energy of the 

rotor and the corresponding squared angular momentum differ only 

by a factor of  I/2 (why?). 
 

 

   But what about the spectroscopy? 

 
 

To see if transitions between different rotational states are allowed 

(i.e., probable), time-dependent perturbation theory suggests that we 

look at the dipole transition moment between the different states 
 

     M, J    M, J   
 

Using z = cos, for the electric field from the radiation, we get 
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Notice: the dipole moment   must be nonzero for the transition 

moment to be nonzero. So, according to the rigid rotor model: 
 

 

 Rule #1.    A diatomic must have a permanent electric dipole to 

                   have a rotational spectrum. 
 

 

Why? It is instructive to think about what happens when a diatomic 

molecule is placed in an electric field (assumed to be in the z-

direction). 

 

To generate an energy change, and therefore an interaction between 

the electric field and the molecule, there must be a separation of 

charge along the z axis. 

 

   electric potential energy     E


   

 

Why is there a minus sign? The electric field is defined as the 

negative gradient in the electric potential. It gives the direction in 

which a mobile positive charge would move. 

 

 

      E


 

 

 

So a positive electric field combined with a positive dipole has 

negative potential energy. 

 



 

 Interaction of an Electric Field with a Diatomic Molecule 
 

 

 

   
 

Next we ask:  for what values of the quantum numbers M, J, M, J is 

the transition moment nonzero? From our treatment of a three-

dimensional rotor 
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where NM,J is a normalization constant and PJ
M(cos) is a Legendre 

function. Letting x = cos and noting that dx = sind, the 

expression for the transition moment dipole becomes 
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The integral in  vanishes unless M = M . This condition gives 

selection rule #2: 
 

    #2.  M  =  0  
 

Why?  Notice from the diagram above that the electric field exerts a 

twisting force (torque) on the molecule affecting its rotation in a 

plane parallel to the z axis, so there is no change in the z-angular 

momentum (rotation perpendicular to the z-axis). 

 

 Integration over  for M = M gives a factor of 2 :  
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To complete the selection rules for diatomics, we can substitute 

result from the recursion rule for Legendre functions 
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into the integral for the transition dipole moment to get 
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The PJ
M(x) functions are orthonormal, so integrals over PJ+1

M(x) 

PJ′
M(x) and PJ−1

M(x) PJ′
M(x) will be nonzero only if J′ = J + 1 or 

J′ = J − 1, respectively. This result gives the final selection rule for 

the rotational transitions for diatomics: 
 

 

     #3.    J = ±1 
 

 

 

 

 

  Spectroscopic Selection Rules for the Hydrogen Atom 

 

         (electronic transitions) 
 

principal quantum number                    n unrestricted 

 

angular momentum quantum number   l =  1 

 

m quantum number                               m = 0,  1                          
 


