Chemistry 331 Tutorial #3

What are all these quantum mechanical operators and eigenvalues? Where do they
come from? What do they mean? How can we use them?

1. The Hamiltonian operator for the total energy.

a) Prove that

¥(x,0) = w(x)e™™
is a valid solution of the classical wave equation in the x-direction

o'z t) . O\ (x,t)
ot’ ox*

if the x-dependent part of the solution has the form y/(x) = Asin(2mx/%) + Beos(2mx/A) .

b) Show that substitution of & = A/p (from de Broglie’s wave-particle duality) and v = Elh
(from Einstein’s equation £ = hv) into the expression for the wave speed v = Lv gives

0"¥(x,0) _ E°0V¥(x,0)
or’ p. ox

Take the time derivative and verify that

Ow(x)  4n’p;
+ ~y(x)=0
ox’ h vi(x)

The kinetic energy is 7, = pl2m = E — V(x) and therefore px2= 2m(E — V(x)). Substitute
this result into the expression for d*y/(x)/dx” to “derive” the first of Schrodinger’s
quantum mechanical wave equations (the time-independent equation)

Swx) 8T b ) =0
ox’ h’

Notice that a simple rearrangement gives



o oy(x)
87'm  ox’

+Vy(x)=Ey(x)

So we can define the operator

He- 9 iy
&°m ox”

which is equivalent to

H :_1_(_@_2 j +V (%)
2m\ 27 Ox

and then rewrite Schrodinger’s first equation in operator notation

Hy(x)=Ey(x)

Operating on the function gives us back the function back times the total energy £. By
definition then, the energy is an eigenvalue and w(x) an eigenfunction of the operator.

This result is more than just convenient notation. Constructing the operator H and
solving for the eigenvector and eigenfunction gives us the energy of the system and the
wave function, from which other information about the system can be obtained.

2. The Hamiltonian for a classical particle is the sum of its Kinetic energy T (expressed in
terms of momentum) and potential energy V. For a particle moving in the x-direction, the
kinetic energy 1s mv_\.z/2 = p_\.2/2m and the classical Hamiltonian 1s

2
X

L y)=E
2m

Notice the close analogy with Schrodinger’s equation for ];h//(x) = Ey(x):

1 (h oY
_ 5’;(2_7;5; j w(x)+V (x)yp(x) = Ey(x)



For this reason, / is called the “Hamiltonian” operator. Show that the analogy can be
made event stronger by defining the momentum operator

5 h 0

P 27 Ox

2]
8rim\ Ox

3. The time-dependent Schrodinger equation. In Question 1, we showed that the wave
function for a quantum mechanical particle moving in the x-direction

And the kinetic energy operator

S

W (x,t)  E W (x,0)
o p ox

has the general solution
W(x,f) = y(x)e™™

Taking the first time derivative gives

_Rmp; 0¥ (x.1) _ o'W (x,t)
E’ ot ox’

Use E = hv and px2 = (E - V(x)) 2m to “derive” Schrodinger’s tinme-dependent wave
equation where the energy may change with time.

0¥ (x,1) . 8722171( h 0¥ (x,t)

(=0
Py i\ os ot (x)) (1)

In operator notation, the equivalent result is

h 0¥ (x,t) ik O¥(x,1)
2m Ot 2r ot
This equation is used to analyze systems with energies that vary with time, such as
molecules or atoms emitting or absorbing radiation.

HY(x,1) = -



4. Consider the two vectors @ =2i—j+3k and b =i+2j+k.
a) The dot product of vectors a = (ay, ay, a-) and Z; = (by, by, b-) is the scalar quantity
Geb = ab,+ ayb, + ab. = lallb |cost
given by the products of the magnitudes of the vectors and the cosine of the angle 6
between them. Calculate the dot product of @ and b and the angle between the vectors.
b) The cross product of vectors g and b is defined as the vector
axb = (ayb—ab)i+ (a:by— ab.)j + (a.by— a,by)k

which has magnitude |G| | b |sin and direction that a right-hand screw would travel as
d rotates into b . Calculate the cross product of @ and b and its magnitude.

¢) Show that axa =0.

d) Show that axb =-bxa.

S. If the components of a vector depend on a quantity such as time, then the derivative of
the vector 1s

Show that
i(a-b”) = L 4 gel
dt dt t
i(szbﬁ) = d—axg + ﬁxg—b—
de dr ds



What is angular momentum? When is it important?

6. Using the results of problem 5, prove (Hint: Start with d(axa)/dt = 0)

7. In vector notation, Newton’s equation for a single particle is

m dAr((:ic;zy’Z) = F(xﬁ y’ Z)

a) Using the results from Question 6 and operating from the left with 7 x, show that

mg[de—rj:FxF
dr d¢

b) The momentum ﬁ is defined as

. dr
p = I?’l—d7
Show that
i(17 X p)=FxF
dt

This is Newton’s equation of motion for a rotating system. It shows the origins of the

angular momentum ¢ = 7 x p. Notice that the angular momentum is constant if

FxF=0. (r x F is called the “torque”.) We will see that angular momentum is an
important property of electrons in atoms and molecules, and is quantized.

¢) Show that the expression 7 x p reduces to £ = mvr for magnitude of angular
momentum for circular motion. (Recall that we used this result to calculate energy levels
for the hydrogen atom.) What is the direction of / for circular motion?



8. Quantum mechanical operators are Hermitian.

Energy, momentum and other important physical quantities are real numbers (not
complex or imaginary like a + ib or ib) evaluated by applying quantum mechanical
operators to wave functions. Operators and wave functions, however, can be complex or
imaginary. This places important mathematical restrictions on both the operators and
wave functions that we should know about.

If eigenvalues a defined by OY = aV are real numbers, then we can show
[W'OWdx = [WO' ¥ dx (1)

Operators satisfying this condition are called “Hermitian”. Multiplying OY = a'¥ from
the left by Y and integrating gives

19" O%dr = [ aWdr=a [P Pdr=a

Taking the complex conjugate of OY = a"¥ and requiring a to be real (a = a’) gives
OF =a¥ =d¥

Multiplying from the left by Y and integrating gives

TILPOA\P(L\ = T]‘Pa\P*dx = mj‘P‘P'dx = ¢

which proves equation (1) is valid for a Hermitian operator. Equation (2) is often used for
a more general definition of a Hermitian operator

19" Oddy = [P0V dx @

Using equation (1) as the criterion, which of the following operators are Hermitian?

d/dx id/dx d*/di? id*/dx? x xd/dx



9. Quantum mechanical operators are Hermitian and their eigenvalues are real. In
addition, the eigenfunctions must satisfy special conditions too: they are orthogonal.

Consider the two eigenvalue equations: O\‘P" = a”LP” and OLPm = am‘{Jm

Multiply the first by \P,: and integrate. Then take the complex conjugate of the second

and multiply by “P" and integrate.

19°0% de=a, [¥,"¥, dx

¥ 0w dv=a [¥¥, d

Subtracting the second of these equations from the first gives
,"L}]m Oan d'x - J‘\{]n O*\Pm d'x = (an - a:x) J‘lIJm \Pnd'x

Because the operator is Hermitian, the left side is zero and therefore

m

(@ —a) ¥, ¥der=0

There are two possibilities to consider: n=m and n# m. When n =m, because the wave
function is normalized, we have

(a -a) [ W.de=(a,-a)(1)=0

and therefore a, = a, . This is just another proof the eigenvalues are real.

The result for n # m is more interesting.

(a —a’) [¥, "W dc=0 n e

In most cases, all of the eigenvalues are different (for example, the energy levels £, E,,
E;, ... of the hydrogen atom, particle in box, harmonic oscillator, etc.). For
nondegenerate eigenvalues (a, # a,), we have the important result



19 W de=0 I

A set of eigenfunctions that satisfies this condition is said to be orthogonal. A set of
functions that is normalized and orthogonal is orthonormal.

a) Show that the wave functions for a particle in a box of width L

¥ (x) = %sin ﬁz@

are orthogonal.

b) Show that the wave functions for a particle moving on a ring of radius R

|
Y (0)=——e""  m=0,%1, £2, £3, ...

are orthogonal. @ is the angular position of the particle (0 < 6<2m).

10. Sets of orthogonal functions are enormously useful in quantum chemistry and in
many other branches of science. Quantum chemistry computer programs such as
Gaussian 98, for example, are used to estimate molecular wave functions by taking sums
of Gaussian functions.

Consider an arbitrary function f{x) and a set of orthogonal functions (), wa(x), ws(x),
wa(x), ... In practice, f{x) could be a quantum mechanical wave function we want to
calculate, a voltage in a communication line, a spectrum, etc. The set of functions y,(x) is
complete if it is possible to express f(x) as

fE=2 ey, ()

But what are the values of ¢, ¢a, ¢3, ¢4, ... ? Because the set of functions is orthogonal,
multiplying both sides of the expression for f{x) by ¥ (%) and integrating gives



T (s @ = e, Ty, (e =e, Jy (= ()

n=1

This is the formula for calculating the coefficients of the expansion of f{x) in terms of the
basis set of functions ,(x).

If y,,(x) is real and normalized then z//,,,*(x) = Y(x), hz/m* wndx =1 and

-2}

C/n = JW!H ('x)f(x)d'x
a) Use a sum of the sine functions sin(mmx/a) to represent the step function

fixy= 1 for 0<x<a/2

fixy=-1 for a2<x<a

step function
15 ‘ , [ I ,
1.0 | —

00 02 04 06 08 10 12
x/a
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first approximation (n = 1)

£\

\ square wave|

(4a/m)sin(2mx/a)

00 02 04 06 08 10 12
x/a

second approximation (n =1, 3)

1.5

1.0 ¢

— (4/3m)sin(6mx/a)

(4/)sin(2mx/a)

00 02 04 06 08 10 12

x/a
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