Chemistry 332

Introduction to Molecular Spectroscopy and Statistical Thermodynamics]

General Description: Chemistry 332 introduces the basic applications of
quantum theory to atomic and molecular structure. Approximate methods for
solving Schrddinger’s are discussed, emphasizing energy levels, spin and
their relation to selection rules and rotational, vibrational and electronic
spectroscopy. In the second part of the course, quantum and statistical theory
are combined to introduce statistical thermodynamics. Applications to
systems of chemical interest are presented, including the molecular
interpretation of thermodynamic quantities, such as the internal energy,
entropy, heat capacity and equilibrium constants for chemical reactions.

Instructor: Derek Leaist (dleaist@stfx.ca), Office PSC 3072, Lab PSC 3020

Lectures: Mon. 11:15 am, Tues. 1:15 pm, Thurs. noon (NT 412)
Tutorials: selected Fridays, 2:15 to 5:00 pm (AX 23A)
Textbook: None required. Many textbooks covering the course material are

available at reasonable prices (or free). Copies of the course
notes and supplementary reading material will be provided.

Problem Sets: About eight problem sets will be assigned to cover the course
material. They are important in order to understand the material, and
should be completed and handed in. Portions of the assignments will
be taken up in the tutorial sessions together with other problems of
interest.



Chemistry 332 Course Outline

Hydrogen-Like Atoms: Wave functions, probability densities, orbital angular
momentum, and electron spin. Spectra of hydrogen-like atoms. Magnetic effects.

Multi-Electron Atoms: The quantum mechanical treatment of the helium atom.
The variational theorem and approximate methods for solving Schrodinger’s
equation. Hartree-Fock self-consistent field method. Pauli exclusion principle
and the Aufbau construction of the periodic table of elements. lonization energy
and electron affinity. Introduction to atomic spectroscopy. Term symbols.

H>" and H2 Molecules and Chemical Bonding: Quantum mechanics of bonding
in the hydrogen molecule ion and the hydrogen molecule. The Born-
Oppenheimer approximation.

Molecular Structure: Molecular orbital description and electronic
configuration of diatomic molecules. Electronic structure of polyatomic
molecules. Dipole moments and intermolecular forces.

Rotational and Vibrational Spectroscopy. Spectra of diatomic molecules.
Introduction to the rotational and vibration of polyatomic molecules. Raman and
Fourier transform spectroscopy.

Electronic Spectroscopy of Molecules. Molecular energy levels and selection
rules. Electronic absorption spectra of diatomic molecules. The Franck-Condon
principle. Measurement of dissociation energies. Introduction to the electronic

spectra of polyatomic molecules. Fluorescence and phosphorescence. Lasers.

Introduction to Statistical Mechanics: Brief review of classical thermodynamic
energy and entropy. The Boltzmann distribution over accessible energy levels.
Partition functions and the molecular interpretation of the energy and entropy.

Applications of Statistical Thermodynamics: Translational, rotational,
vibrational and electronic contributions to the thermodynamic properties of ideal
gases. Equilibrium constants for ideal gas reactions. Fluctuations in
thermodynamic quantities.



Classes:

Tutorials:

Term Tests:

Final Exam:

Chemistry 332 Course Schedule (2022)

Thursday January 6th to Tuesday April 5th (NT 412)

Fridays, 2:15 to 5:00 pm (AX 23A)
26 January

02 February

09 March

16 March

30 March

Wednesday 09 February, 2:15 to 5:00 pm, AX 23A
Wednesday 23 March, 2:15 to 5:00 pm, AX 23A

April exam period (date TBA)

Chemistry 332 Marking

Final Exam (date TBA) 45 %
Midterm Tests (two, 20% each) 40 %
Problem Sets (about eight) 15 %

100 %



Chemistry 332 Study Material

See: Chem 332 Moodle pages

Moodle backup:
https://people.stfx.ca/dleaist/Chem?232/

m PowerPoint course notes

m tutorial questions (with answers)

m equation sheets

m sample problem assignments (with answers)
m sample term tests (with answers)

m list of topics and terminology for each section

m pdf copies of supplementary reading from:
T. Engel, P. Reid. Physical Chemistry, Pearson.

R. J. Silbey, R. A. Alberty. M. G. Bawendi.
Physical Chemistry, 4" Ed., Wiley.



for concise summaries and worked problems:

PHYSICAL
CHEMISTRY

Schaum’s Outline of Physical Chemistry

2" edition ($25 Amazon.ca)

Clyde A. Metz
Chapters on quantum mechanics and spectroscopy,
also thermodynamics, electrochemistry, kinetics,
and transport properties.




Part 1. The Electronic Structure of Atoms|

The wave function of an atom contains all the information about the properties of
the atom. The wave functions for the hydrogen atom and other one-electron
atoms (such as He* and Li?*) can be calculated exactly by solving Schrodinger’s
equation. Approximate methods must be used to calculate the wave functions for
atoms containing two or more electrons. These numerical calculations can be
very accurate, but require complicated computer calculations.

So we start with (brief review from Chem 331):

Hydrogen-Like Atoms

What are they? He' (Z =2), Li** (Z = 3), Be®* (Z = 4), etc. lons with one nucleus
and one electron (two bound particles), atomic number Z > 1.

Also a few rare, but interesting, “exotics”, such as muonium
(more on that in the tutorial!).

Why are they important? Schrédinger’s equation can be solved exactly for
hydrogen-like atoms, using the reduced mass concept to simplify the two-body
problem to an effective one-body problem. This greatly expands the number of
chemical systems that can be treated analytically by quantum mechanical principles.
(For molecules and multi-electron atoms, cumbersome and less accurate numerical
methods must be used to solve Schrodinger’s equation.)

For hydrogen-like atoms, the electrostatic potential energy and the reduced mass in
Schrodinger’s equation for the hydrogen atom
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me IS the electron mass and my is the nucleus mass.

Schrodinger Equation for Hydrogen-Like Atoms

Hy (r,0,4) =Ew(r,0,¢)

with Hamiltonian operator
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The Laplacian operator V?can be separated into radial and angle-dependent terms

, 1a(gj 1 L2
Viso | — |-
r’ or or) r*hn’

The angle-dependent terms can be represented by the operator L*for the square of the
angular momentum.
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Partial separation of variables leads to solutions of Schrodinger’s equation of the form
Vo (1,0,8) =R ()Y, (0,0)

Rne(r) is called the hydrogen-like radial wave function and Y.m(8,¢) are spherical
harmonics. As for the hydrogen atom,

principal quantum number n=1,23,4,...
orbital angular momentum quantum number £=0,1,2,...,n -1 (€ <n)
magnetic quantum number m=0,+1,+2, ..., £¢

A Few Solutions to SchrOdinger’s Equation for Hydrogen-Like Atoms:
(the Bohr radius is ag = eoh?/mue?)
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Okay, but how can a chemist or physicist use these wave functions?

1. Enerqgies of Hydrogen-Like Atoms

For an isolated hydrogen atom (no externally applied magnetic fields or other fields),
the energy depends only on the principal quantum number n. The same result obtained
for hydrogen-like atoms:

422
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Why is the energy negative and proportional to Z??

The energy equation can be simplified by lumping the constants together to form a
single parameter. If the energy is expressed in cm=, the unit favored by
spectroscopists, this factor R called the Rydberg constant.

Photon energies hv are inversely proportional to wavelengths
hv = hc/A

so energies are converted from units of Joules to wavenumbers by dividing by hc
(and don’t forget to convert from m=! to cm™t)
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Using energies En in wavenumbers defined by

E =

n
the Rydberg constant (in wavenumbers) is
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The Rydberg constant depends on fundamental physical constants and the mass of the
nucleus.

For the hydrogen atom, ‘R, =1.096 775 856 x 10° cm™!

For the deuterium atom, R, = 1.097 074 275 x 10° cm™

In the limit me/my — o, R, =1.097 373 153 x 105 cmL

Notice the extraordinary precision of Rydberg constants. This is possible because
frequencies can be measured very precisely and accurately.

2. lonization Enerqgies: A4l —> AZ + e

The ionization energy of a hydrogen-like atom is defined as the energy required to take

the atom from its ground state (n; = 1) to the dissociated state ns = oo where the electron
and nucleus are infinitely far apart. In wavenumbers:

EIONIZATION — Ef T Ei — _g _(_ m% ) = S:RZZ
o0
For the hydrogen atom (Z = 1) E.OMZAT.ON =R, =10967.75 856 cm™
=2.178722 x 10712
= 13.605698 eV

For hydrogen-like atoms, ignoring small changes in the reduces mass, the ionization
energies are

E ~Z*R, =13.606Z% eV

IONIZAT ION

13.606 x 22 =54.424 eV for He*, 13.606 x 32 =122.45 eV for Li**, etc.



3. Electronic Spectra of Hydrogen-Like Atoms

The selection rules for transitions between atomic energy levels are

An unrestricted A€ =%1 Am=%10
Transitions from any initial n; value to any final ns are therefore “allowed”.
For emission spectra: ns < n; For absorption spectra, ns > ni

The photon energy AE = hv = E¢r — E; in wavenumbers is
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4. Electron Density — Important for Atomic Structure

For a hydrogen-like atom, the probability of finding the electron in the volume element
dr = dxdydz is (whem)™ wnem dz. (Recall that the asterisk denotes the complex conjugate
of wnem, Where all values of i in yne, are converted to —i.)

Transforming to more-convenient spherical r, 6, ¢ coordinates with
dr = r%sinddrddd¢ gives

electron density = rZsin@ywnum(r,0,4)* Wnem(r,0,)

Finding the maximum value of the electron density gives the most probable locations
of the electron. The locations of zero electron density are called nodes. Nodes are
required to make the wave functions orthogonal:

[w..)*v,.,dr=0 if n=n or (#¢ or m=m



Electron Densities forn=1,2, 3and £=0 (s), 1 (p), 2(d)

(graphical display)




Stereo plots of probability electron probability densities

See:

D. T. Cromer, Stereo plots of hydrogen-like electron densities,
Journal of Chemical Education, 45, 626—631 (1968)

Online Views of Hydrogen Orbitals

www.falstad.com/gmatom

e shows real wave functions (used by chemists)
¢ also complex wave functions

e phase information can be color coded

e Vviews can be rotated in three dimensions

o radial probability distribution can be plotted

e time evolution also simulated



