
                                             

 

     

 

                                                  Chemistry 332 

 

                Introduction to Molecular Spectroscopy and Statistical Thermodynamics            

 
────────────────────────────────────────────────────────── 

General Description:  Chemistry 332 introduces the basic applications of 

quantum theory to atomic and molecular structure. Approximate methods for 

solving Schrödinger’s are discussed, emphasizing energy levels, spin and 

their relation to selection rules and rotational, vibrational and electronic 

spectroscopy. In the second part of the course, quantum and statistical theory 

are combined to introduce statistical thermodynamics. Applications to 

systems of chemical interest are presented, including the molecular 

interpretation of thermodynamic quantities, such as the internal energy, 

entropy, heat capacity and equilibrium constants for chemical reactions.  
────────────────────────────────────────────────────────── 
 

Instructor: Derek Leaist (dleaist@stfx.ca), Office PSC 3072, Lab PSC 3020      

 

Lectures:   Mon. 11:15 am, Tues. 1:15 pm, Thurs. noon (NT 412) 

 

Tutorials:  selected Fridays, 2:15 to 5:00 pm (AX 23A)  

 

Textbook:  None required. Many textbooks covering the course material are  

   available at reasonable prices (or free). Copies of the course   

   notes and supplementary reading material will be provided.  

 

Problem Sets:   About eight problem sets will be assigned to cover the course 

material. They are important in order to understand the material, and 

should be completed and handed in. Portions of the assignments will 

be taken up in the tutorial sessions together with other problems of 

interest. 

 



 

Chemistry 332 Course Outline 
 

1. Hydrogen-Like Atoms:  Wave functions, probability densities, orbital angular 

 momentum, and electron spin. Spectra of hydrogen-like atoms. Magnetic effects. 

 

2. Multi-Electron Atoms:  The quantum mechanical treatment of the helium atom. 

 The variational theorem and approximate methods for solving Schrödinger’s 

 equation. Hartree-Fock self-consistent field method. Pauli exclusion principle 

 and the Aufbau construction of the periodic table of elements. Ionization energy 

 and electron affinity. Introduction to atomic spectroscopy. Term symbols. 

 

3. H2
+ and H2 Molecules and Chemical Bonding: Quantum mechanics of bonding 

 in the hydrogen molecule ion and the hydrogen molecule. The Born-

 Oppenheimer approximation.  

 

4. Molecular Structure: Molecular orbital description and electronic 

 configuration of diatomic molecules. Electronic structure of polyatomic 

 molecules. Dipole moments and intermolecular forces. 

 

5. Rotational and Vibrational Spectroscopy. Spectra of diatomic molecules. 

 Introduction to the rotational and vibration of polyatomic molecules. Raman and 

 Fourier transform spectroscopy. 

 

6. Electronic Spectroscopy of Molecules. Molecular energy levels and selection 

 rules. Electronic absorption spectra of diatomic molecules. The Franck-Condon 

 principle. Measurement of dissociation energies. Introduction to the electronic 

 spectra of polyatomic molecules. Fluorescence and phosphorescence. Lasers. 

 

7. Introduction to Statistical Mechanics: Brief review of classical thermodynamic 

 energy and entropy. The Boltzmann distribution over accessible energy levels. 

 Partition functions and the molecular interpretation of the energy and entropy.  

 

8.  Applications of Statistical Thermodynamics: Translational, rotational, 

 vibrational and electronic contributions to the thermodynamic properties of ideal 

 gases. Equilibrium constants for ideal gas reactions. Fluctuations in 

 thermodynamic quantities. 



 

                    Chemistry 332 Course Schedule (2022) 
 

Classes:     Thursday January 6th to Tuesday April 5th (NT 412) 

 

Tutorials:    Fridays, 2:15 to 5:00 pm (AX 23A)     

    26 January       

    02 February 

    09 March          

    16 March 

    30 March 

 

Term Tests:  Wednesday 09 February, 2:15 to 5:00 pm, AX 23A 

    Wednesday 23 March, 2:15 to 5:00 pm, AX 23A 

 

Final Exam:   April exam period (date TBA) 

 
 

 

 

    Chemistry 332 Marking 

 

 

    Final Exam (date TBA)             45 % 

 

    Midterm Tests (two, 20% each)    40 % 

 

    Problem Sets (about eight)     15 %   

                                                                                                100 % 

    
 

                                                  

 

 



 

 

 

  Chemistry 332 Study Material 
 

 

See:  Chem 332 Moodle pages 
 

   Moodle backup: 
   

   https://people.stfx.ca/dleaist/Chem232/  
   

 

   ∎  PowerPoint course notes 

 

   ∎  tutorial questions (with answers) 

 

   ∎  equation sheets 

 

   ∎  sample problem assignments (with answers) 

 

   ∎  sample term tests (with answers) 

 

   ∎  list of topics and terminology for each section 

 

   ∎  pdf copies of supplementary reading from:  

 

 

     T. Engel, P. Reid. Physical Chemistry, Pearson. 

 

   

     R. J. Silbey, R. A. Alberty. M. G. Bawendi.  

     Physical Chemistry, 4th Ed., Wiley. 

 
 

 



 Schaum’s Outline of Physical Chemistry  

      2
nd

 edition  ($25 Amazon.ca) 

     Clyde A. Metz 

Chapters on quantum mechanics and spectroscopy,  

also thermodynamics, electrochemistry, kinetics,  

and transport properties. 
   

 

 

 

for concise summaries and worked problems: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

                               Part 1. The Electronic Structure of Atoms   
 

 The wave function of an atom contains all the information about the properties of 

the atom. The wave functions for the hydrogen atom and other one-electron 

atoms (such as He+ and Li2+) can be calculated exactly by solving Schrödinger’s 

equation. Approximate methods must be used to calculate the wave functions for 

atoms containing two or more electrons. These numerical calculations can be 

very accurate, but require complicated computer calculations.   

 

 So we start with (brief review from Chem 331):  

 

              Hydrogen-Like Atoms 
 

What are they? He+ (Z = 2) , Li2+ (Z = 3), Be3+ (Z = 4), etc. Ions with one nucleus  

   and one electron (two bound particles), atomic number Z > 1. 

 

   Also a few rare, but interesting, “exotics”, such as muonium   

   (more on that in the tutorial!).  

 

Why are they important?  Schrödinger’s equation can be solved exactly for 

hydrogen-like atoms, using the reduced mass concept to simplify the two-body 

problem to an effective one-body problem. This greatly expands the number of 

chemical systems that can be treated analytically by quantum mechanical principles. 

(For molecules and multi-electron atoms, cumbersome and less accurate numerical 

methods must be used to solve Schrödinger’s equation.) 

 

For hydrogen-like atoms, the electrostatic potential energy and the reduced mass in 

Schrödinger’s equation for the hydrogen atom  
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are changed to (notice the factor of Z)  
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me is the electron mass and mN is the nucleus mass. 

   

 

Schrodinger Equation for Hydrogen-Like Atoms 

 

   ),,(),,(  rErH =
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with Hamiltonian operator 
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The Laplacian operator 
2 can be separated into radial and angle-dependent terms 
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The angle-dependent terms can be represented by the operator
2L̂ for the square of the 

angular momentum. 
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Partial separation of variables leads to solutions of Schrödinger’s equation of the form 
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Rnℓ(r) is called the hydrogen-like radial wave function and Yℓm(θ,) are spherical 

harmonics. As for the hydrogen atom, 

 

     principal quantum number               n = 1, 2, 3, 4, … 

     orbital angular momentum quantum number ℓ = 0, 1, 2, …, n − 1         (ℓ < n) 

     magnetic quantum number               m = 0, ±1, ±2, … ,  ± ℓ 
 

 

A Few Solutions to Schrödinger’s Equation for Hydrogen-Like Atoms: 

         (the Bohr radius is a0 = ε0h2/πμe2) 

n = 1, ℓ = 0, m = 0   )/(exp
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n = 2, ℓ = 0, m = 0  )2/exp(2
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n = 2, ℓ = 1, m = ±1  )exp()2/exp(sin
64

1
0

0

2/3

0

121



 iaZr

a

Zr

a

Z
−








=

  

 



 Okay, but how can a chemist or physicist use these wave functions? 

 

1.  Energies of Hydrogen-Like Atoms 
 

For an isolated hydrogen atom (no externally applied magnetic fields or other fields), 

the energy depends only on the principal quantum number n. The same result obtained 

for hydrogen-like atoms: 
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Why is the energy negative and proportional to Z2? 

 

The energy equation can be simplified by lumping the constants together to form a 

single parameter. If the energy is expressed in cm−1, the unit favored by 

spectroscopists, this factor  called the Rydberg constant. 

 

Photon energies hv are inversely proportional to wavelengths 

 

      hv = hc/ 

 

so energies are converted from units of Joules to wavenumbers by dividing by hc 

(and don’t forget to convert from m−1 to cm−1!) 
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Using energies 
n

E
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in wavenumbers defined by    
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the Rydberg constant (in wavenumbers) is  
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The Rydberg constant depends on fundamental physical constants and the mass of the 

nucleus. 

 

 For the hydrogen atom,   
H

  = 1.096 775 856  105 cm−1 

 

 For the deuterium atom,  
D

  = 1.097 074 275  105 cm−1  

 

 In the limit me/mN → ,    = 1.097 373 153  105 cm−1 

 

Notice the extraordinary precision of Rydberg constants. This is possible because 

frequencies can be measured very precisely and accurately.  

 

 

2.  Ionization Energies:  AZ-1 →  AZ  +  e– 
 

The ionization energy of a hydrogen-like atom is defined as the energy required to take 

the atom from its ground state (ni = 1) to the dissociated state nf =  where the electron 

and nucleus are infinitely far apart. In wavenumbers: 
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For the hydrogen atom (Z = 1)   
1

HIONIZATION
cm 856 10967.75 

~ -E ==  

              = 2.178722  10−19 J 

              = 13.605698 eV 
 

For hydrogen-like atoms, ignoring small changes in the reduces mass, the ionization 

energies are 

 

   eV 13.606 
~ 2

H

2
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13.606  22 = 54.424 eV for He+,  13.606  32 = 122.45 eV for Li++, etc. 



3.  Electronic Spectra of Hydrogen-Like Atoms 
 

The selection rules for transitions between atomic energy levels are  

 

 Δn  unrestricted    Δℓ = ±1   Δm = ±1, 0 

 

Transitions from any initial ni value to any final nf are therefore “allowed”.  

 

For emission spectra: nf  <  ni            For absorption spectra,  nf  >  ni 

 

The photon energy ΔE = hv = Ef  − Ei in wavenumbers is  
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          Hydrogen Atom Spectra 

 

                (in Wavenumbers) 

 

 

 

 

 

 

 

 

 

 

 



                        
 

             Electronic Transitions for Hydrogen Atoms (in nm)  

 

 

 

4.  Electron Density – Important for Atomic Structure 
 

For a hydrogen-like atom, the probability of finding the electron in the volume element 

dτ = dxdydz is (nℓm)* nℓm dτ. (Recall that the asterisk denotes the complex conjugate 

of nℓm, where all values of i in nℓm are converted to −i.) 

 

Transforming to more-convenient spherical r, θ,  coordinates with  

dτ  =  r2sinθdrdθd gives  

 

  electron density  =  r2sinθnℓm(r,θ,)* nℓm(r,θ,)  

 

Finding the maximum value of the electron density gives the most probable locations 

of the electron. The locations of zero electron density are called nodes. Nodes are 

required to make the wave functions orthogonal: 
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      Electron Densities for n = 1, 2, 3 and ℓ = 0 (s), 1 (p), 2(d) 
 

                              (graphical display) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

            Stereo plots of probability electron probability densities  
 

  See: 

    
 D. T. Cromer, Stereo plots of hydrogen-like electron densities,  

 Journal of Chemical Education, 45, 626−631 (1968) 
 

 

 

 

                            Online Views of Hydrogen Orbitals  
 

 

                         www.falstad.com/qmatom 
 

 

 

 •  shows real wave functions (used by chemists) 

 

 •  also complex wave functions 

 

 •  phase information can be color coded 

 

 •  views can be rotated in three dimensions 

 

 •  radial probability distribution can be plotted 

 

 •  time evolution also simulated 

 

 

 

 

 


