
            Part 4.  Many-Electron Molecules 
 

In our analysis of H2
+ and H2 molecules, we used linear combinations of 1s orbitals to 

estimate the molecular structure. This is a major oversimplification, but the calculated 

bond energies, bond lengths, force constants, etc. are quite reasonable. For our 

purposes, the treatment provides insight regarding the consequences of the exclusion 

principle and the origins of chemical bonding and excited molecular states. 

 

The linear combination of two 1s orbitals gave us: 

 

  a bonding 1s molecular orbital 

 

  a higher energy antibonding *1s molecular orbital 

 

To carry out more accurate calculations on H2
+ and H2, and to extend the treatment to 

more complicated diatomic molecules, all we have to do is repeat the calculations 

using additional orbitals: 2s, 2px, 2py, 2pz, 3s, … 

 

This approach leads to the molecular energy levels for diatomics (The bond is along 

the z axis. * denotes an antibonding molecular orbital.):  

      .  

      .   

      . 

     E(3pz) 

     E(3px)   = E(3py)           (degenerate) 

          E(*3s) 

     E(3s) 

     E(*2pz) 

     E(*2px) = E(*2py)         (degenerate) 

          E(2pz) 

     E(2px)   = E(2py)           (degenerate) 

     E(*2s) 

     E(2s) 

          E(*1s) 

  Energy   E(1s) 

 



  Molecular Orbital (MO) Theory Correctly Predicts that  

    Oxygen Molecules are Paramagnetic 

 

According to MO theory, the ground-state electron configuration of an oxygen 

molecule (16 electrons) is:  

 

 

  O2  (1s)2 (*1s)2 (2s)2 (*2s)2 (2px)2 (2py)2 (2pz)2 (*2px)1 (*2py)1         

               

Hund’s rule #1, which also applies to molecules, tells us that the *2px  and  *2py  

molecular orbitals are occupied by one unpaired electron each, with parallel spins, so 

an oxygen molecule has net electron spin and is paramagnetic. 

 

Magnetic sensors are used to monitor oxygen levels.  

 

 

 

  Molecular Orbital (MO) Theory Correctly Predicts that  

            He2, Be2, Ne2, etc. Do Not Exist 

 

Another test of MO theory: 

 

The predicted ground-state electron configuration of molecules formed by filled-shell 

atoms are:  

 

 

  He2    (1s)2 (*1s)2  

 

  Be2    (1s)2 (*1s)2 (2s)2 (*2s)2  

 

  Ne2    (1s)2 (*1s)2 (2s)2 (*2s)2 (2px)2 (2py)2 (2pz)2 (*2px)2 (*2py)2 (*2pz)2       

 

 

and so on. These molecules do not have a net excess of bonding electrons and are 

therefore predicted to be unstable. Consistent with this prediction, He2, Be2, Ne2, etc. 

have never been detected by spectroscopists 

. 



What do molecular orbitals “look like”? 
 

 Linear combinations of two 1s atomic orbitals give: 

 

   the bonding 1s (or g1s) molecular orbital 

 

   the antibonding *1s (or u1s) molecular orbital 

    
____________________________________________________________________ 

 

 Linear combinations of two 2pz atomic orbitals to give the bonding 2pz (or 

 g2pz) molecular orbital and the antibonding *2pz (or u2pz) molecular orbital: 

   

     
 

 

 

 



Linear combinations of two 2px atomic orbitals to give the bonding 2px (or u2px) 

molecular orbital and the antibonding *2px (or g2px) molecular orbital 

 

  

 

   What do the  and  symbols mean?  
 

 Historically, chemists have used the notation , , , … to denote  

 the number of nodes in the bonding orbital. 

 ______________________________________________________ 

 Atomic Orbitals    m  nodal planes  designation 

            in bonding orbital  

         ______________________________________________________  

  s     0   0     

 

  pz     0   0     

 

  px or py  1   1     

 

  dzx or dzy  1   1     

 

  dx2−y2   2   2     

 

  dxy   2   2                   

 

 

        What do the Asterisks Mean? 
 

As the internuclear distances decreases from infinity, the energy of bonding orbitals 

becomes negative and passes through a minimum (stable configuration).  

 

Antibonding orbitals have positive energy (relative to the constituent atoms at infinite 

separation) and no stable minima. They are indicated by an asterisk *. 

 

 

 



   Nomeclature for Molecular Orbitals 

____________________________________________________________ 

   Simple LCAO-MO    SCF-LCAO-MO 

____________________________________________________________ 

 1s   g1s     1g 

 *1s   u1s     1u 

 2s   g2s     2g 

 *2s   u2s     2u 

 2px   u2px     1u 

 2py   u2py     1u 

 2pz   g2pz     3g 

 *2px  g2px     1g 

 *2py  g2py     1g 

 *2pz  u2pz     3u 

____________________________________________________________ 

In the self-consistent field LCAO calculations, linear combinations of many atomic 

orbitals are used, and the electron density is “smeared out” to give a symmetrical 

charge density to estimate the screening of electrons from the nuclear charge. In this 

case, orbitals such as 2px and 2py lose their meaning and are lumped together as 1u 

orbitals in SCF-LCAO nomenclature. 

  

 

 

 

 

 

 

 



  Homonuclear Diatomic Molecules, LCAO Configurations 

______________________________________________________________________ 

molecule     no. of    Ground-state electronic configuration 

  electrons     LCAO 

______________________________________________________________________ 

H2
+       1  (1s)1 

H2       2  (1s)2 

He2
+       3  (1s)2(*1s)1 

He2       4  (1s)2(*1s)2            (not observed) 

Li2       6  (1s)2(*1s)2(2s)2 

Be2       8  (1s)2(*1s)2(2s)2(*2s)2        (not observed) 

B2     10  (1s)2(*1s)2(2s)2(*2s)2(2p)2 

C2     12  (1s)2(*1s)2(2s)2(*2s)2(2p)4 

N2     14  (1s)2(*1s)2(2s)2(*2s)2(2p)4(2pz)2 

O2     16  (1s)2(*1s)2(2s)2(*2s)2(2p)4(2pz)2(*2p)2
 

F2     18  (1s)2(*1s)2(2s)2(*2s)2(2p)4(2pz)2(*2p)4 

Ne2     20  (1s)2(*1s)2(2s)2(*2s)2(2p)4(2pz)2(*2p)4(*2pz)2    () 

______________________________________________________________________ 

 

 

 

 

 

 

 

 

 

 

 

 



  Homonuclear Diatomic Molecules, SCF-LCAO Configurations 

 

______________________________________________________________________ 

molecule     no. of    Ground-state electronic configuration 

  electrons     SCF-LCAO 

______________________________________________________________________ 

 

H2
+       1  (1g)1 

H2       2  (1g)2 

He2
+       3  (1g)2(1u)1 

He2       4  (1g )2(1u)2            (not observed) 

Li2       6  (1g)2(1u)2(2g)2 

Be2       8  (1g)2(1u)2(2g)2(2u)2        (not observed) 

B2     10  (1g)2(1u)2(2g)2(2u)2(1u)2 

C2     12  (1g)2(1u)2(2g)2(2u)2(1u)4 

N2     14  (1g)2(1u)2(2g)2(2u)2(1u)4(3g)2 

O2     16  (1g)2(1u)2(2g)2(2u)2(1u)4(3g)2(1g)2                            

F2         18  (1g)2(1u)2(2g)2(2u)2(1u)4(3g)2(1g)4  

Ne2     20  (1g)2(1u)2(2g)2(2u)2(1u)4(3g)2(1g)4(3u)2     () 

______________________________________________________________________ 

 

 

 

 

 

 

 

 

 

 



  Electron Density Contour Diagrams 
 

 
 

 

 

 

 

 

 

 

 



  Electron Density Contour Diagrams 
 

   
 

 

 

 

 

 



    Orbital energies can be measured by photoelectron spectroscopy! 

 

Atomic and molecular orbitals are abstract, nonclassical, and might appear to be far 

from reality.  

 

But atomic and molecular orbital energies can be measured experimentally! 

 

A beam of high energy electromagnetic radiation, usually X-rays, of variable 

wavelength is passed through a sample of gas-phase atoms or molecules. When the 

photon energy hv matches the ionization energy of an electron in an orbital, some of 

those photons are absorbed and the appropriate electron is ejected, which produces a 

measurable electric current through a collection electrode.       

 

  

 

 

 Photoelectron Spectrum 

      of N2 Molecules 

 

(1s)2(*1s)2(2s)2(*2s)2(2p)4(2pz)2 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   The Electronic States of Diatomic Molecules  

   are Described by Molecular Term Symbols 

 

The electronic states of atoms are designated by atomic term symbols. 

 

To determine the analogous term symbols for diatomic molecules, the magnetic 

quantum numbers for the z-component of the orbital angular momentum of each 

electron are simply added: 

 

  ML  =  m  1  +  m  2  +  m  3  +   …   +  m  N 

 

for the N electrons. ml is zero for a  orbital, 1 for a  orbital, 2 for a  orbital, ...  

 

Then Ms is calculated by adding the quantum numbers for the electron spin along the z 

axis. 

  MS  =  ms1  +  ms2  +  ms3  +   …   +  msN 

 

The possible values of ML and MS are arranged in a table to find the quantum number S 

for the total spin angular moment to arrive at the molecular term symbol 

 

    2S+1ML  

 

with upper case Greek letters corresponding to S, P, D, F, …  

 

  __________________________________ 

   ML         Greek Letter 

  __________________________________ 

 

    0          

    1         

    2         

    3         

  __________________________________ 

    

 

 

 



Example 1.     What is the molecular term symbol for the H2 molecule? 

 

The electronic configuration is (1g)2 and so m  1  =  m  2  = 0   and  ML = 0. The 

electron spins must be in opposite direction according to the exclusion principle, and 

so MS = 0. This is a singlet Sigma state: 

          
1  

 

 

 

Example 2.     What is the molecular term symbol for the He2
+ molecular ion? 

 

The electronic configuration is (1g)2(1u)1  In this case, m  1  =  m  2  = m  3 = 0 which 

gives  ML = 0 and another Sigma state. The first two electrons in the filled 1g orbital 

must have opposite spins, which cancel each other. The third electron in the 1u orbital 

can be spin up or spin down:  ms3 = 1/2 or ms3 = −1/2. This gives MS = 1/2 

corresponding to the projection of electron spin with quantum number S = 1/2 and spin 

multiplicity 2S + 1 = 2 (a doublet).    

       
2 

 

 

Example 3.     What is the molecular term symbol for the C2 molecule? 

 

The electronic configuration is (1g)2(1u)2(2g)2(2u)2(1u)4  All of the electrons are 

paired, so MS = 0. The 8 electrons in the  orbitals have m  1  =  m  2  = … m  8 = 0. 

The remaining 4 electrons in the  orbital have m    =  1, − 1, 1, − 1  for a total ML = 0. 

This is a singlet Sigma state. 

       
1 

 



Example 4.     What is the molecular term symbol for the B2 molecule? 

 

In this case, the electronic configuration is (1g)2(1u)2(2g)2(2u)2(1u)2. 

All of the electrons are paired, except for the unpaired (1u)2 electrons (corresponding 

to an electron in a 2px orbital and another electron in a 2py orbital). Each of these 

electrons can have m   values of 1 and ms values of 1/2. The following table can be 

constructed to summarize the number of different combinations of magnetic and spin 

quantum numbers for the z-component of the angular momentum.  

 

____________________________________________________________________ 

 m  1   ms1   m  2   ms2  ML  MS 

____________________________________________________________________ 

   1    +1/2             1   +1/2*      

1.   1    +1/2             1   −1/2    2    0 

   1   −1/2             1   +1/2**      

2.   1    +1/2           −1   +1/2    0    1 

3.   1    +1/2           −1   −1/2    0    0 

4.   1    −1/2           −1   +1/2    0    0 

5.   1    −1/2           −1   −1/2    0  −1  

6. −1    +1/2           −1   −1/2  −2    0 

____________________________________________________________________ 

*not allowed, exclusion principle 

**not allowed, electrons 1 and 2 are indistinguishable 

 

 



An equivalent way of writing out the six possible arrangements is: 

 

m =  1                __  

 

m = −1  __               

 

Entries number 1 and 6 in the table have ML = 2 and MS = 0. This is a singlet Delta 

state:  1. 

 

Entries 2, 3, and 5 have ML = 0 (Sigma state) and MS values of  −1, 0, 1. Recalling that  

     −S      MS      S  

these entries indicate a triplet (S = 1) Sigma state:  3    

 

The remaining entry (no. 4) has ML = 0 and MS = 0. This is a singlet Sigma state:  1. 

 

In summary, the term symbols for the ground-state B2 molecule are:  1,  3,  1. 

   

Hund’s rules apply (Z < 40), so the triplet Sigma state (with the largest spin 

multiplicity) will have the lowest energy. For the two singlets, the Delta state (larger L) 

will have the lower energy. The energies of the states increase in the order 

 

        3          <         1          <          1 

 

                           



 Molecular Structure Prediction 
 

Hartree-Fock calculations have been carried out for a large number of molecules. 

Ground-state molecular geometries (bond lengths, bond angles) can be calculated to a 

high degree of accuracy for small molecules.  

 

The bond lengths and bond angles are usually reliable to within a few picometers 

(10−12 m) and a degree or two. The results are impressive considering that no empirical 

parameters are used. These kinds of calculations are called ab initio calculations. 

 

A wide range of Hartree-Fock calculations have been reported. Some studies employ 

small sets of basis functions to approximate the molecular orbitals and do not actually 

reach self consistency. More reliable calculations employ large basis sets of functions 

or solve the Schrödinger equations numerically. 

 

Hartree-Fock calculations can be improved by using perturbation methods (and other 

techniques) to represent electron-electron interactions more accurately than using 

average electron distributions. The additional electron-electron interaction energy not 

described by using the SCF approximation is called electron correlation. 

 

Current topics of interest:  

  

  ♦ protein structures 

  ♦ base pair interactions in DNA 

  ♦ substrate-enzyme structures  

  ♦ transition metal complexes and catalysts 

  ♦ excited molecular states and free radicals 

  ♦ molecular collisions and dynamics 

  ♦ transition states and chemical reactions 

 

 

 

 



       Comparison of Measured and Predicted Molecular Structures 

   (bond lengths in pm, bond angles in degrees) 

____________________________________________________________________ 

molecule  geometrical      Hartree-Fock        Improved  Experiment 

                            parameter         Hartree-Fock 

____________________________________________________________________ 

 

   H−H     r(HH)     73.0    73.8         74.1 

 

  Li−Li     r(LiLi)   280.7  277.2               267 

 

  Li−H     r(LiH)   163.6  164.0               159.5 

 

  Li−F     r(LiF)   156.6  157.0               156.4 

 

  O=O     r(OO)   116.8  124.5               120.7 

 

HCCH     r(CC)   118.5  121.7               120.3 

              r(CH)   105.7  106.3               106.1 

 

H−C−H     r(CH)   109.6  110.9               111.1 

    (HCH)   103.0  102.1               102.4 

 

   CH4    r(CH)   108.4  109.0               108.6 

 

   NH3            r(NH)   100.2  101.7               101.2 

    (HNH)   107.2  106.4               106.7 

 

  H−O−H     r(OH)     94.7    96.9                 95.9 

    (HOH)   105.5  104.0               103.9 

 

H−O−O−H    r(OO)    139.3   146.7                147.5 

      r(OH)      94.9     97.6                  95.0 

    (OOH)     102.2     98.7                  94.8 

    (HOOH)   115.2    121.3                120.0 

____________________________________________________________________ 



 

 

    Valence Bond Methods 

 
 

Almost all of the quantum mechanical calculations of the electronic structure of 

molecules use some form of molecular orbital theory. 

 

When applied to large polyatomic molecules, the calculated electronic energy will 

depend on many different bond angles and bond lengths which much be adjusted to 

find the minimum energy. The minimization procedure becomes very-time consuming 

for complicated molecules with many electrons and nuclei.    

 

Most chemists think about molecular structure in a different way in terms of valence 

bond models in which chemical bonds are viewed as pairing of electrons between 

atomic orbitals located on the bonded atoms = ball and stick models! 

 

A valence bond can be formed by the pairing of unpaired electrons with opposite spin 

functions (covalent bond) or by the donation of an electron pair on one atom into an 

empty orbital on another atom (coordinate covalent bond). In both cases the 

electrons are assumed to be localized between the bonded atoms, rather than spread 

over the whole molecule in a molecular orbital. 

 

 

 

Valence bond models are based on the idea that a chemical bond is formed when 

there is good overlap between the atomic orbitals of the participating atoms.  

 

 

 

They provide convenient approximations to help understand bonding, but are not used 

in quantitative quantum chemistry calculations 

 

Valence-bond models are based on the assumption of “perfect pairing”. There are four 

steps in the preparation of a wave function for a valence bond: 

 

 



 

Step 1 

 

Form a set of atomic orbitals on each atom into which the bonding pair of electrons 

will be placed. The set of atomic orbitals on each atom can be a single orbital (e.g., 2s) 

or a linear combination of atomic orbitals (e.g., c12s + c22pz). In the Heitler-London 

treatment of the H2 molecule, for example, 1s orbitals on each H atom were used.  

 

Let A and B be the atomic orbitals chosen for atoms A and B. 

 

 

Step 2 

 

Spin atomic orbitals are formed so the electrons bonding the atoms have paired spins  

().  

 

There are two possible choices: 

 

  A and  B    or  A and  B 

 

 

Step 3 

 

Next, Slater determinants of the atomic spin orbitals are constructed for each of the 

two choices 
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to form all possible combinations of the spin orbitals. 

 

 

Step 4 

 

The final step, the two determinant functions are combined to give the valence bond 

wave functions 
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Multiplying out the determinants gives the following expressions for the valence bond 

wave functions 
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A few points to notice: 

 

 

a) 1
VB and 2

VB are both antisymmetric with respect to the interchange of electrons 1 

and 2, as required by the exclusion principle. 1
VB is the product of a symmetric spatial 

function and an antisymmetric spin function, and vice versa for 2
VB. 

 

 

b) As a consequence of the minus sign in the spatial function 2
VB has a node (zero 

electron density) along the z-axis between atoms A and B. 2
VB is therefore a “no 

bond” wave function representing an excited state. 

 

 

c) 1
VB is the bonding wave function (no node along the bonding z-axis). 

 

    

 

 



What’s the Difference Between Molecular Orbital and Valence Bond Models? 

 

Valence Bond Model of the H2 Molecule 

 

To apply the valence bond model to the ground-state hydrogen molecule, we used 1s 

orbitals on each H atom 

 

  A = 1sA                 B  =  1sB 

 

 

and the wave function for the H-H bond is 
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LCAO Molecular Orbital Model of the H2 Molecule 

 

To apply the molecular orbital model to the ground-state hydrogen molecule, we also 

use 1s orbitals on each H atom, but now we use Slater functions of linear 

combinations of the atomic orbitals. The electrons are assumed to be “free” to roam 

the entire molecule. 

 

For the bonding MO (spatially symmetric wave function), we obtain: 
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Comparing the valence bond and LCAO-MO wave functions  
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shows the LCAO-MO contains extra terms representing ionic states where both 

electrons are on atom A or on atom B. Ionic states are important for molecules such as 

LiF which are formed from atoms with widely different electronegativities. 

 

  

The Linear BeH2 Molecule and Valence Bond sp Hybrid Orbitals 

 

Adding the concept of hybrid orbitals (linear combinations of atomic orbitals on the 

same atom) to valence bond theory vastly increases the number of molecular structures 

that can be rationalized. 

 

For example, experiments show that beryllium and hydrogen form the stable 

compound BeH2. Spectroscopic measurements indicate a linear molecule with the 

structure H−Be−H (i.e., the HBeH bond angle is 180o). 

 

Question.  How can Be atoms with the filled-shell electronic configuration (1s)2(2s)2 

form bonds with two hydrogen atoms with electronic configuration (1s)1? 

 

 Answer.  A 2s electron in the Be atom is promoted to a 2p orbital. The remaining 2s 

electron and the promoted 2p electron to form two hybrid (i.e., mixed) sp orbitals for 

bonding with two H atoms.  

 

Energy is of course required to excite a 2s electron into a 2p orbital, but this energy is 

more than recovered by the formation of two Be−H bonds. 



 

The two sp orbitals are formed by taking linear combinations of the atomic 2s and 2p 

orbitals on beryllium. For bonding along the z-axis, we use the 2pz orbital.  
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The 2pz orbital is positive for z > 0 and negative for z < 0, whereas the 2s orbital is 

spherically symmetric. This means that the A(i) hybrid orbital will be positive for z > 0 

to overlap favorably with the 1s orbital of a hydrogen atom, and the A(ii) hybrid orbital 

will be positive for z < 0 to overlap with the other hydrogen atom to form a stable 

BeH2 molecule, and give the correct 180o  HBeH bond angle! 

 

 

 

                     
 

 

 

 

 

 

 



 

  Electron Density for sp Hybrid Orbitals 

 

                    

 

                       
 

 

   Formation of BeH2 (the px and py orbitals are vacant) 

 

 

 

 

   
 

 

 

 

 

 



The Planar BH3 Molecule and Bond sp2 Hybrid Orbitals 

 

Boron, with the electronic configuration (1s)2(2s)2(2p)1 and a single unpaired electron, 

might be expected to form the stable molecule BH. And it does! 

 

More interestingly, boron and hydrogen also form the stable compound BH3. 

Spectroscopic measurements indicate a planar molecule with HBH bond angles of 

120o. How can this be rationalized? 

 

B atoms with the electronic configuration (1s)2(2s)2(2p)1 can form bonds with three 

hydrogen atoms by promoting a 2s electron to a 2p orbital to form three sp2 hybrid 

orbitals for bonding with two H atoms.  

 

The three sp2 orbitals are formed by taking linear combinations of the atomic 2s and 

the two 2p orbitals on boron.  
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The three hybrid orbitals constructed in this manner lie in the x-z plane with lobes 

pointing in directions separated by 120o.  

 



                    
 

Electron Density of sp2 Hybrid Orbitals 

 

                  
 

Formation of BH3 

 

                   
 

Extending these ideas, sp3 can be used to rationalize the tetrahedral structure of CH4 

and the approximately tetrahedral structure of ammonia (three N−H bonds plus a 

nonbonding “lone pair” of electrons) and water (two O−H bonds and two lone pairs), 

and many other bonding geometries. 

 



   Hückel Molecular Orbital Theory 
 

Molecular orbital theory is a triumph of modern science, providing accurate properties 

of molecules calculated ab initio (from first principles, without empirical parameters). 

As computers continue to become faster and more powerful, MO calculations are 

becoming routine, but are still time consuming, especially for large molecules with 

many bond angles and bond lengths to be optimized. 

 

Valence bond theory provides a much simpler description of chemical bonding. 

Though only qualitative, VB models are very useful in practice because they do not 

require long, complicated computer calculations. 

 

Molecules with extensive -bonding systems, such as benzene and many other 

important molecules, are not described very well by valence bond methods.  

 

                                                     Why? 
 

Hückel developed a variation of MO theory for -bonded molecules. Though 

approximate, Hückel methods are very useful in practice, mostly in organic chemistry, 

because the calculations are relatively simple. As a bonus, valuable information about 

excited states is provided. 

 

In addition, Hückel theory is a good example of semi-empirical quantum mechanical 

methods. Instead of trying to calculate everything from first principles (can be very 

time consuming), spectroscopy and other experimental methods are used to evaluate 

some of the energy terms and other molecular properties that are difficult to calculate.  

 

  

In Hückel MO theory, the key assumptions are: 

 

 1.  sp2 hybridization on carbon and the resulting C−C and C−H  bonding (no   

  nodes on the bond axis) provides the molecular framework. 

 

 2.  The remaining pz orbitals provide the  bonding (one node on the bond axis), 

  superimposed on the sigma  C−C bonds to form double C=C bonds.  

 



Hückel Theory for Ethylene (H2C=CH2) 

 

Ethylene illustrates the simplest application of Hückel theory. Both carbon atoms are 

assumed to be sp2 hybridized, resembling the planar BH3 molecule discussed 

previously.  

 

sp2 hybridization in ethylene provides the sigma C−H bonds and the sigma C−C bond 

between the carbon atoms:  

 

 

                                          H         H 

                                            \       / 

     C−C                           sigma bonds in ethylene 

                                            /       \ 

                                          H         H 

 

The double C=C bond is produced by the additional overlap of the third remaining 2p 

orbital on each carbon atom, perpendicular to the plane of the molecule: 

 

                    

                          bond                     nonbonding  orbital (more nodes) 

  
 

 

 



The key feature of the Hückel model is the assumption that the  electrons, which are 

responsible for the special properties of conjugated and aromatic systems, do not 

interact with each other or with other electrons in the molecule.  

 

For ethylene, the wave function for the  electrons is assumed to be a linear 

combination of the pz orbitals on the two carbon atoms. 

 

      =  c1pz1  +  c2pz2 

 

  Electron Energies     Applying the variational principle, the calculated energy of the 

 electrons 
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is minimized by setting E/c1 and  E/c2 equal to zero. As we have seen before, the 

energy minimization leads to the secular equation 
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The following reasonable (why?) assumptions are made: 

 

 1.  The overlap integrals Sik are zero, unless i = k and Sii = 1 (complete overlap). 

 

 2.  The coulomb integrals Hii are assumed to be identical and are set equal to . 

 

 3.  The exchange integrals Hik (i  k) are zero, except for those on neighboring 

       atoms which are set equal to .  

 

In this context, notice that  and  are not spin states!  



With these approximations, the secular equation simplifies considerably  
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which is equivalent to 

  

     E2 −2E + 2  − 2   =  0 

 

Solving the quadratic equation for the energy (try it!) gives 

 

  

      E =        

 

The usual practice is to evaluate  (the coulomb integral) and  (the exchange 

integral,  −75 kJ mol−1) empirically, from spectroscopic or calorimetric 

measurements. The exchange integral is negative (“stabilizing”), so the energy of the 

ground state is   + . The energy of the excited state is   − .     
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      −−−−−−−−     −    =   E2           LUMO 

 Electron Energy          (lowest unoccupied 

Level Diagram for                                                             molecular orbital)  

Ethylene    

      - - - - - - - - -      

                                             

                                             | 

                                             | 

    Energy E                   +    =   E1          HOMO 

           (highest occupied  

           molecular orbital) 

 



                                    

 

 

                  Energy Levels for  

 

  the  Electrons 

 

  in Ethylene 

 

 

 

 

In the ground state ethylene molecule, the  electrons are in the lower energy and the 

total  electron energy is 2E1 = 2(  + ). 

 

The energy difference between the ground level and the excited level is 

 

  E(excited   state) −  E(ground  state)  =  E2  −  E1   =   −2 

 

−2 is about 150 kJ mol−1, so ultraviolet photons are required to promote a  electron 

from the ground state to the excited state.  

 

 

Bonding and Nonbonding Wave Functions     The wave functions for the two energy 

levels can now be evaluated by solving the secular equation for c1 and c2. 
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Substituting the lower energy E =   +   into either of these equations (try it!) gives c1 

= c2 and the symmetric (gerade) wave function. 
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for the bonding orbital. 



 

For the higher energy level, E =   − , we obtain c1 = − c2 and the asymmetric 

(ungerade) wave function    
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for the nonbonding orbital. Notice that these results are analogous to the LCAO 

energies obtained for the H2
+ molecule ion. This is not accidental! 

 

 

Hückel Theory for  electrons in Butadiene (H2C=CH−CH=CH2) 

 

The application of Hückel to butadiene is more interesting. Although butadiene 

molecules have cis and trans configurations, we will treat the molecule as simply a 

linear sequence of four carbon atoms. 

 

    
 

Each of the four carbon atoms contributes a  electron orbital. Proceeding as before, 

we write 
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for the wave equation for the  electrons. The secular equation is 
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With the help of the Hückel approximations, the secular equation simplifies to 
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Dividing each row by   and defining x = ( −E)/  gives 
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which is equivalent to 

 

     x4 − 3x2  +  1  =  0   

 

 

This equation is easily solved for x2 
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to obtain the four roots 

 

 

    x  =  0.61804,  1.61804  

 

 

 



Recalling that x = ( −E)/ and also that  is negative, we find 

 

 

     butadiene  electron energy levels 

       

      E4 =    − 1.618 highest energy 

 

      E3 =    − 0.618      LUMO 

 

      E2  =   + 0.618      HOMO 

 

      E1  =   + 1.618       lowest energy 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

In the ground-state butadiene molecule, the four  electrons fill the lowest two energy 

levels. The total  electron energy is 2E1 + 2E2 = 4 + 4.472. 

 

 

Notice that the energy difference between the ground level and the first excited level 

for butadiene is E3 − E2 = −1.236 compared to −2 for ethylene, illustrating that the 

energy levels become closer together as the length of the molecule increases.  

 

The particle in a box strikes again!  

 

 

 

Delocalization Energy      It is interesting to compare the energy of the butadiene  

electrons to the energy of the localized structure in which the two double bonds are 

localized between carbon atoms 1 and 2 and between carbon atoms 3 and 4. 

 

 

For the localized  bond in ethylene, the calculated energy for a single  electron is  

 + . Subtracting  4( + ) from the energy for butadiene energy gives 

 

 

 

 

        butadiene  delocalization energy   

 

 E(butadiene) − 2E(ethylene) =    4 + 4.472 − 4( + ) 

             =    0.472 

                −35 kJ mol−1  

 

 

 

 

 

 

 



Wave Functions     The wave functions for the four energy levels can be evaluated by 

solving the secular equation for c1 through c4 and taking linear combinations of the pz 

orbitals on carbon atoms n = 1 to n = 4. 
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Notice that the number of nodes increases with the energy: 

 

 

       
 

 

 

 

 



 

  Electron Density     We have assumed no overlap of neighboring orbitals (Sik = 0 for 

i  k), so the pzn functions are orthonormal 
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The total  electron density on the nth carbon atom is therefore  
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where ni is the number of electrons in the ith orbital. The  electron density on the first 

carbon atom in butadiene is 

 

    q1   =  2c11
2  +  2c21

2  +  (0)c31
2   +  (0)c41

2  

 

                          =  2(0.3717)2  +  2(0.6015)2  

 

                            =  1.0000 

 

The other qn’s are also 1.0000, indicating that the  electrons are uniformly distributed 

over the butadiene molecule. 

 

 

  Bond Order     Another interesting quantity we can calculate is the  electron 

density between adjacent carbon atoms r and s. 
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 Between carbon atoms 1 and 2, the  electron density is 

 

  P12 =  2c11c12  +  2c21c22  +  (0)c31c32  +  (0)c41c42 

            =  2(0.3717)(0.6015)  +  2(0.6015)(0.3717) 

        =  0.8942 

 



For comparison, the  electron density between carbon atoms 2 and 3 is 

 

  P23 =  2c12c13  +  2c22c23  +  (0)c32c33  +  (0)c42c43   the We have 

            =  2(0.6015)(0.6015)  +  2(0.3717)(−0.3717) 

        =  0.4473 

 

This result shows that the  electrons in butadiene are not uniformly distributed and are 

more likely to be found between the outer two carbon atoms than the middle two 

carbon atoms.   

 

 

    Hückel Theory for Benzene 
 

The benzene molecule has six carbon atoms in a ring. 

 

   
The Hückel secular determinant for the  electrons in benzene is  
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Because benzene is cyclic, carbon atoms 1 and 6 are adjacent, so the 1,6 and 6,1 

elements of the determinant are nonzero. 

 



Solving the 6th degree polynomial for the energies gives four different energy levels, 

two of which are doubly degenerate: 

 

            E6  =    −  2 

 

   E4 ,  E5  =    −   (LUMO, doubly degenerate) 

 

   E2 ,  E3  =    +   (HOMO, doubly degenerate) 

 

            E1  =    +  2 

 

 

 

  
 



Benzene Delocalization Energy     The total  electronic energy in ground-state 

benzene is  

 

 

  2E1  +  2E2  +  2E3  =   2(  +  2)  +  2(  +  )  +  2(  +  ) 

          =   6  +  8 

 

 

If the six  electrons were in three localized double bonds, then the  electronic energy 

would be equivalent to the energy of three ethylene  bonds = 3(2  +  2) = 6  + 6, 

so the delocalization (or resonance) energy of benzene is therefore    

 

 

 

    Benzene Delocalization Energy 

 

   E(benzene) − 3E(ethylene) =  6 + 8 − 6 − 6 

          =  2 

            −150 kJ mol−1 

 

 

 

Wave Functions     The wave functions for the energy levels are linear combinations 

of the pz orbitals on carbon atoms n = 1 to n = 6. 
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The constants c1n through c6n are evaluated by substituting the energies into the secular 

equation to and solving to obtain the  electron wave functions: 

 

 

 

 

 

 



    Benzene  Eelectron Wave Functions 
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  Electron Density      The  electron density on the first carbon atom in benzene is 

 

  q1  =  2c11
2  +  2c21
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2   +  (0)c41

2   +  (0)c51
2  +  (0)c61

2 

                        

      
3

2
0

3

1

3

1
2)0(2

6

1
2

22

++=







++








=      

 

               =  1 

 

The other qn’s are also 1 (try it!), indicating that the  electrons are uniformly 

distributed over the benzene molecule. 

 



  Bond Order and Resonance     It is customary to write the structure of the benzene 

molecule as the Kekule structures 

 

     
 

implying alternating single and double bonds in the ring. Double C=C bonds, which 

are shorter and stronger than the corresponding single C−C, can be detected by 

experimental techniques such as x-ray crystallography. Measurements indicate, 

however, that all of the carbon-carbon bonds in benzene are equivalent. 

 

This result can be understood by assuming that the two structures for benzene written 

above are in resonance, producing a uniform distribution of  electrons around the 

ring.  

 

Hückel theory can be used to illustrate the quantum mechanics of resonance structures. 

by calculating the  electron density between adjacent carbon atoms in the benzene 

ring. 
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 Between carbon atoms 1 and 2, the  electron density is 

 

 

 P12 =  2c11c12  +  2c21c22  +  (2)c31c32  +  (0)c41c42  + (0)c51c52  +  (0)c61c62 
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For comparison, the  electron density between carbon atoms 2 and 3 is 

 

 P23 =  2c12c13  +  2c22c23  +  (2)c32c33  +  (0)c42c43  + (0)c52c53  +  (0)c62c63 

   

      
6

1

2

1

3

1

32

1

32

1
2

4

1

4

1
2

6

1

6

1
2 −+=

−
++=  

    

          =  2/3 

 

 

P34, P45, P56, and P61 are also 2/3, illustrating the important result, verified by 

experiment, that all of the bonds in benzene are equivalent. 

 

The uniform distribution of  electrons in benzene can be visualized by assuming that 

the two equivalent Kekule structures 

 

     
are in rapid “resonance”: 

 

     

 

    
 

 

 

 

 



 

    Spin-Orbit Coupling  
 

For “light” atoms (Z less than about 40), the interactions between the orbital angular 

momentum and spin angular momentum is sufficiently weak to be ignored in 

calculating the total angular momentum. This is the key assumption in the Russell-

Saunders scheme for determining atomic term symbols.  

 

The interaction between orbital and spin angular momentum, though very small, is not 

zero. When an electron has orbital angular momentum, a small magnetic dipole and a 

correspondingly weak magnetic field are generated. This magnetic field interacts with 

the electron spin magnetic moment and produces a very small change in the energy. 

 

The magnitude of spin-orbit interaction energy is proportional to the dot product of the 

orbital and spin angular momentum vectors 
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c is a proportionality constant. 
 

The expression  
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for the square of the total angular momentum and  
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to derive 
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for the energy change caused by spin orbit coupling. (In the notation used here, note 

that  J,   and S are quantum numbers, not the magnitudes of the angular momentum 

vectors.) 

 

Experiments give c  0.000023 Z4  eV. 


