Spectroscopy

using electromagnetic radiation to study atoms and molecules

one of the most important applications of qguantum mechanics
uses radiation to determine atomic and molecular properties
provides molecular structures with extraordinary accuracy
monitors molecular events on timescales down to femtoseconds
many practical applications, including analytical chemistry
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The fundamental idea behind spectroscopy: the energy of absorbed or emitted photons
is related to the difference between the quantum mechanical energy levels of atoms or
molecules involved in the transition

hv =hc/A=hcv = |Efina — Einitiall

v = 1/4 is the wavenumber of the radiation, the number of waves per unit length.
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A portion of the visible spectrum of iodine vapor:
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Every one of these transitions can be assigned to well defined initial and
final quantum states!



The energies of the photons indicate the kinds of transitions:

radio-frequency transitions between nuclear spin states (nmr spectroscopy)

microwaves transitions between rotational and electron spin states
infrared vibrational transitions (superimposed on rotational states)
visible/uv transitions between electronic energy levels
X-rays ionization and bond dissociation
gamma rays nuclear energy levels
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The energy levels of atoms and molecules decide the possible frequencies and
wavelengths of absorbed and emitted radiation for atomic and molecular transitions.
But what transitions are probable (most intense)?

Electromagnetic radiation consists of propagating oscillations in the strengths of the
electric and magnetic fields.

™

Atoms and molecules are collections of positively-charged nuclei and negatively-
charged electrons. So, the strength of the interaction between electromagnetic radiation
and atoms or molecules is governed the electric dipole moment operator

:[lzzqiﬁ

for the distribution of electrical charges q; at positions ;. In Sl units, an electric dipole
is expressed in C m. In practice, the non-SI unit “Debye” is often used.

1 Debye =1 D =3.33564 x 10°C m

Molecules with large permanent dipoles (i.e., large permanent separation of electrical
charge, such as HCI) therefore interact relatively strongly with radiation

<~ 1=1.08D
H-CI°-

producing the most intense (most probable) transitions. Molecules and atoms can also
have fluctuating (transient) electric dipole moments that can interact with radiation,
though more weakly.



Time-Dependent Perturbation Theory Gives the Selection Rules for Transitions

Spectroscopic selection rules decide which transitions between quantum mechanical
states are the most intense.

Until now, we have been considering wave functions obtained by solving the
time-independent Schrodinger equation for stationary states of isolated atoms
and molecules

Hy (F) = Ey (F)

But transitions from one state to another, as the terminology implies, are transient
processes described by the time-dependent Schriédinger equation

A (r,t) = in Tl

Time-Dependent Perturbation Theory  To solve this equation for spectroscopic
transitions, the time-dependent part of the Hamiltonian operator H® is treated as a

small perturbation superimposed on the time-independent Hamiltonian H© for
isolated atoms and molecules in stationary states.

H(rt)=HO @) +HO(,1)
To solve the time-dependent Schrddinger equation

(H® + HOYY(F,t) = in XY



it’s convenient to simplify the equations by assuming that the electric field of the
electromagnetic radiation oscillates in the z-direction

E(t) = E,, cos(2avt)

v is the frequency of the radiation and Eo; is the amplitude of the oscillations in the
electric field. If 4 is the dipole moment of a molecule in the z-direction, the energy of
interaction between the radiation and the molecule is

ey

HY =—i-E =—uE,, cos@2mt)

If the molecule has no dipole moment in the z-direction (no separation of charge,
permanent or temporary, along the z-axis), there is no interaction.

Transitions from State 1 to State 2  Consider possible transitions between stationary
states 1 and 2 with wave functions y1 and y» (note: lower-case psis!) satisfying the
time-independent Schrddinger equations

H (O)Wl(f) = By, (F)

H (O)Wz (F) = B, (F)

H @ for the stationary states does not depend on the time. As a result, it’s relatively
easy to show (try it!) that the corresponding wave functions (upper-case psis!)



W (1) =y, (F) e ="

W, (F,1) =y, (P e ™"
are solutions of the time-dependent Schrddinger equations

HOW (F 1) = 5 0T, 1)

HOW (F 1) = 5 O (1)

Suppose that the system is initially in state 1, and the perturbation (the applied
radiation field) is “turned on” at time t = 0. The subsequent time-evolution of the state
of the molecule is then represented by the linear combinations of states 1 and 2

P(r,t) =a, (1), (F,1) +a, (1), (1)

with time-dependent mixing coefficients a;(t) and ax(t) to be determined. The system is
initially in state 1, so the initial conditions are

al(o):]- az(o):O

Substituting the expression for ‘¥(r,t) into



OF(F 1)

(HO + HO)¥(r,t)=in

gives the rather complicated expression

a,(t)H O, +a,()H O, +a, ()H V¥, +a,())H V¥,

O, (F 1)

—inw, % viny, ":‘jzt(t) inay () L i, (1) aq'%(:’ )

But wait! The first two terms and the last two terms in this equation cancel (why?) to
give

a,(HHOY, +a,(t)H VY, =iny, % +in'p, d Zzt(t)

This equation can be multiplied by W,* and integrated over the spatial coordinates =



a, () ¥HOW dr + a,)[ W, HOW,d7

., da(t . ., da,(t «
- m%()ququldr ih Zt()jtpquzdr

d

Y1 and W, are normalized and orthogonal (“orthonormal”), and so

day (1)
dt

a(M)[HHOWdr + a,O)[¥HOY,dr = in

—iEt/ 7

Substituting the spatial () and time-dependent (€ ) factors for W1 and ¥;

al(t)-[ (l//2 e—iEzt/h) * |:| (1)W1 e—iElt/hd r

n a2 (t)j (WZ e—iEzt/h)* I:I (1)l)”2 e—iEzt/hd r = Ihdd_atz

leads to further simplification

a, (t)e (B jwz*I:I(1)w1dr+a2(t)jw2*l:l(l)w2 dr = ih%

For weak perturbations, relatively few atoms or molecules make the transition out of



the initial V' state. The term proportional to ax(t) can therefore be neglected, at least
initially, but not the term proportional to da,/dt (why?), to give

i ~ a,
e_l(El_EZ)t/hsz*H(l)WldT— Ihdd—t

The derivative day/dt is especially interesting for spectroscopy. It gives the rate at
which the population of molecules in state ¥, builds up as a result of the transition
from the initial state V.

The time-dependent perturbation Hamiltonian H® is proportional to the product of the
electric dipole moment and the oscillating electric field (assumed for convenience to be
along the z axis)

H® =—4 E,, cos@avt) = —u,E,, (e‘z”"t + eiz’”t)
So the expression for day/dt becomes

Ihdd% _ _e—i(El—Ez)t/h jl/fz*,uz Eoz(eiZﬂvt |27zvt)l//1dz_

_ _(e—i(El—EZ—hV)t/h+ e_i(El_E2+hV)t/h) EOszZ *,Uzl//l dr

Defining the dipole transition moment between states W1 and ¥:

(£4,) 0 = IWz *uy,dr



we find

da,

F oc By, (1,)(8

—i(E,—E,—hv)t/h

" e—i(El—E2+hv)t/h)

Integrating between time t = 0 (when a; for the amplitude of the final state is zero) and
time t gives

a,(t) oo Ey (4, )21{

1— ei(Ez—E1+hv)t/h 1— ei(Ez—El—hv)t/h }
+
E,—E, +hv E,—E, —hv

Why bother to do all this?  The results are fundamental and important:

1. For absorption spectroscopy (the final state has higher energy, E2 > E;) the
important resonance denominator Ez — E1 — hv causes the second term to be
relatively large determining ax(t) when

E>—E1 = AE = hv absorption

For emission spectroscopy (the final state has lower energy, E> < E;) the resonance
denominator Ez — E1 + hv causes the first term to be relatively large when

Ei—E> = AE = hv emission

This is the famous Bohr frequency condition:



When a system makes a transition from one state to another, it absorbs (or emits) a
photon whose energy is equal to the difference in the energies of the two states.

2. There is no absorption or emission if the dipole transition moment (decided by the
stationary initial and final states) is zero.

3. The strength of the absorption is proportional to the dipole transition moment and
the amplitude of the oscillating electric field.

Application to the Spectroscopic Selection Rules for Diatomic Rigid Rotors

The time-dependent perturbation theory of spectroscopic transitions combined with the
properties of spherical harmonics can be used to derive the selection rules for linear
rigid rotors. These rules give the observed rotational spectra of diatomics and other
molecules.

From last term, the wave functions for rigid rotors are spherical harmonics Y;" (6,¢)
v M M
HYJ (0,9) = EJYJ (0,9)

with rotational energies

I +D)n’
Y 1=0,1,2,3, ...

E,

| is the moment of inertia




mm, r2
m, +m,

Spherical harmonic functions are also eigenfunctions of the operator for the square of
angular momentum

)" (0.4) = n*I(I+D)Y," (0.9)
and the operator for the z-component of the angular momentum
L,Y}" (0,4) = IMY," (6,¢)

with respective eigenvalues #°J(J +1) and %M . The energy of the rotor and the
corresponding squared angular momentum differ only by a factor of 1/2 (why?).

But what about the spectroscopy?

To see if transitions between different rotational states are allowed (i.e., probable),
time-dependent perturbation theory suggests that we look at the dipole transition
moment between the different states

M, J - M,J

Using 14 = ucosé, we get



(1) 30 e = [[Y2 (0,8)* iY)" (6, $)siN 60 Od ¢

= u[[Y"(0,8)*Y" (0,¢)sinGcosfdOd ¢

Notice that the dipole moment must be nonzero for the transition moment to be
nonzero. So, according to the rigid rotor model:

Rule #1. A diatomic must have a permanent dipole to have a rotational spectrum.

Why? It is instructive to think about what happens when a diatomic molecule is placed
in an electric field (assumed to be in the z-direction).

To generate an energy change, and therefore an interaction between the electric field
and the molecule, there must be a separation of charge along the z axis.

—

electric potential energy =—4"E

Why is there a minus sign? The electric field is defined as the negative gradient in the
electric potential. It gives the direction in which a mobile positive charge would move.

E

—V(D

So a positive electric field combined with a positive dipole has negative potential
energy.




Interaction of an Electric Field with a Diatomic Molecule

(A) Component of force
Torque induces perpendicular to bond axis
) rotation +
£, electric field ) .
S \  FesE
—_—
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Component of force
perpendicular to bond axis

. With no charge separation,
£. electric field there is no dipole moment
‘ » and hence no coupling of
—_— £ to the molecule.
—_—
Center of mass

Next we ask: for what values of the quantum numbers M’, J’, M, J is the transition
moment nonzero? From our treatment of a three-dimensional rotor

YJM (0!¢) = NM,JPJM(COSQ)eiW

where Nw j IS a normalization constant and p,ml (cosd) is a Legendre function. Letting
X = cosd and noting that dx = —sin&d g, the expression for the transition moment dipole
becomes



2r 1
(14) 0w = BNy Ny [ d g [P ()P (x)d x
0 -1

The integral in ¢ vanishes unless M = M'. This condition gives selection rule #2:

#2. AM = ()

Why? Notice from the diagram above that the electric field exerts a twisting force
(torque) on the molecule affecting its rotation in a plane parallel to the z axis, so there
IS no change in the z-angular momentum (rotation perpendicular to the z-axis).

Integration over ¢ for M = M’ gives a factor of 27 :

(1) 30 e = 20N, N, [P OOXP™ (X)d X

To complete the selection rules for diatomics, we can substitute result from the
recursion rule for Legendre functions

(23 +)xP" () = (I =M+ DR (x) + (I +|MP (x)

into the integral for the transition dipole moment to get

tl J—|M|+1 M| J+\M\ ‘M‘

=27 N
(/uz)JM,J’M JZ Ry JM_l 27 +1 J+1 27 +1

PIM (x)d




The P,/MI(x) functions are orthonormal, so integrals over P+1 /Ml (x) P;M/(x) and
P, M) P,MI(x) will be nonzero only if ' =J + 1 or J' = J — 1, respectively. This
result gives the final selection rule for the rotational transitions for diatomics:

#3. AJ==1

Why? Photons (spin 1) have angular momentum too! AJ = 1 corresponds to the
absorption of a photon and AJ = —1 corresponds to emission of a photon.

Rotational Spectra of Polyatomic Molecules

Up to now, only the rotation of diatomic molecules has been analyzed. In general, the
rotation of any molecule can be expressed in terms of the moments of inertia about any
three perpendicular axes.

This sum over all N nuclei with masses m; at a distance r; from the axis of rotation.

The convention is to label the three moments of inertia I, lp, and Ic with the axes
chosensothatl. > Ip > I..



Molecular Moments of Inertia

(m is the total mass of the molecule)

1. Diatomics
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Diatomics and Linear Rotors

Linear molecules (e.g., HCI, CO,, CzH>) have all nuclei on a single axis. In this case
the moment of inertia around the bond axis is zero and

lce=1Ip =1 1a=0

L J@ )
’ 2 2|

J=0,1,2,3,4,

E, =0, [ T (the energy difference increases with J)

The energy of a photon (hv) is proportional to its frequency. And because 1/1 = vic,
dividing a frequency by the speed of light gives wavenumbers. Historically,
spectroscopists are fond of expressing energies in these units:

E, JU+D)n® J(J+Dn

E, =
hc 21hc 4rcl
The quantity
_h
47l

Is called the rotational constant of a molecule. It provides the convenient expression
E, =BJ(J +1)

for rotational energies in wavenumbers.



Spherical Rotors

Molecules such as CH4 and SFg have three identical moments of inertia.

I +)R?

J=2|— ol J=0,1,2, 3,4,
E, =BJ(J +1)
B "t
4 rcl

Symmetric Rotors

In symmetric rotors, two moments of inertia are identical, but different from the third
moment of inertia, as for CHsCI, NH3, CsHe.

The unique axis of the molecule is called the principal axis and designated by I;. The
two equivalent moments of inertia are designated by 1..
Prolate symmetric rotors (e.g., CHsCl) have I < .. (le = b =1L la = 1)

(like footballs)

Oblate symmetric rotors (e.g., CeéHs) have I > 1. (Ie = Iy, lb=1la= 11)
(like pancakes)



The rotational energy in this case is the sum of the angular momentum for each axis
divided by twice the moment of inertia.

For prolate rotors (Ic = Ip)

L+ L}
= +

E

The total angular momentum is L? = L, + Ly? + L¢2, and so

-, ¢ L 1 1

+ = —
21 21 2l 21, 21,

1

E—

1

From the quantum mechanics of rotation motion, we know that the total angular
momentum squared can have the values

L' =J(J +DAi° J=0,1,2 34,

We also know that the angular momentum for any particular axis (say the a-axis) is
restricted to the values

L. =K#a K=0, £1, +2, 3, ..., +J

These considerations give the energy levels

R [R5V /A (O S U DY
21, 21, 21,



~

EJYK =BJ(J+1D)+(A- B)K2
and the rotational constants

h h
— B —
4ncl | 4nel |
In cases where K = 0, there is no angular momentum about the principal axis, and the
energy levels depends only on I.. When K = +J, most of the angular momentum arises
from rotation around the principal axis. Notice that the sign of K does not affect the

energy. The sign of K indicates the direction of rotation, clockwise or
counterclockwise, which does not change the energy.

Selection Rules for Rotational Spectra of Polyatomic Molecules

For a molecule to have allowed transitions between different rotational states, it must
have a permanent dipole moment. This means that homonuclear diatomics (such as
0=0), symmetrical linear molecules (such as O=C=0), and spherical rotors (such as
CH4) cannot have rotational spectra.

For unsymmetrical linear molecules (such as C=0), the selection rules AJ = +1 and
AM = 0 derived previously apply.

For symmetric rotors (such as NH3), we have AJ = +1 and AK = 0. Any dipole moment
possessed by a symmetric rotor must lie along the principal axis. Such a molecule
cannot be accelerated into different rotational energy levels about this axis by the
absorption of radiation. A dipole moment perpendicular to the principal axis would be
required to do this.

But ... In practice, using long-path length absorption cells, weak “forbidden”
rotational transitions (e.g., for SiH4) can be observed. Why?



Spectroscopic Selection Rules: Diatomic Harmonic Oscillators

To illustrate the selection rules for molecular vibration, we can apply time-dependent
perturbation theory to the diatomic harmonic oscillator.

Recall that the harmonic oscillator wave functions are

w,(q)=N,H, (a"*q)e™ n=0123, ...

N is a normalization factor, (] is the displacement of the positions of nuclei 1 and 2
from the equilibrium bond length Ro (stretched: ¢ > 0, compressed: ( < 0)
0=4,—-12 — R

0

and « is an abbreviation for

a =+ Kulh’

K is the force constant (a measure of the “stiffness” of the bond), w4 is the reduced mass.

mlm2
lLl =
m +m,

and Hn(allzq) is the nth Hermite polynomial.



H 0 (5 ) =1 (even)

H.($)=2¢ (odd)

H,(§)=4¢" -2 (even)

H,(§)=85"-12¢ (odd)

H, (&) =16&" —48&7 +12 (even)

H, (&) = 32&° —160&° +120& (odd)
Etc.

The energy levels for a harmonic oscillator are equally spaced

Enzh\F(nJrlj n=0,123,...
u 2

With Ens1 — En= AE = (h/27) (K ) Y2

Experiments show that homonuclear diatomics, such as N2, have no vibrational spectra
of significant intensity. For heteronuclear diatomics, such as NO, only one relatively
intense vibrational frequency (called the fundamental frequency) is observed:

1 |k



Why? Shouldn’t there be an infinite number of n <> n’ transitions 1 <> 2,1<> 3,1
—4,...,2>3,24,25, ... with frequencies Vo, 2vo, 3vo, 4vo, ...?

To see if transitions between different vibrational states are allowed (i.e., probable),
time-dependent perturbation theory suggests that we look at the dipole transition

moment (£&)n,n between the different vibrational states

n — N’ transition

The degree of charge separation, and therefore the dipole moment along the bond axis
(assumed to be the z-axis), can change as the bond length oscillates, so the dipole
moment, in general, is a function of g (the deviation from the equilibrium bond length).

(1), = [wi (@) @y, (a)dg

=[N, H, (@ a)e “u(@)N H (" *g)e™ " do

The dipole moment can be expanded in a Taylor series about the value (s at the
equilibrium bond length (g = 0)

d
1.(0) = 4, +[d—“] q
a),

to give



1/2 d 1/2 —aq?
()., = [N H, (a"q) uo+d—;‘q N,H_ (a"*q)e"dq

which is equivalent to the two integrals

(ll’lz)n,n’ — Nn’anLlo_[ Hn' (allzq)Hn(allzq) e_"‘qqu

+N N ((jglj H (a"*q)qH (a'*q)e“"dq

Because wave functions for the harmonic oscillator are orthogonal, the first integral is
zero. To evaluate the second integral, the recursion formula for Hermite polynomials

H,(E)=H,. )+ H,.()

is helpful. Defining & = a'?q gives (£is the Greek letter xi, not to be confused with
¢, the Greek letter zeta!)

(1,),n = NaN(dﬂ]IH (5){anl(§)+ Hnﬂ(f)}e dg

The Hermite polynomials are orthogonal, so the dipole transition moment is zero
unless

N=n-1 or N=n+1



This gives the important selection rule for the allowed transitions for the harmonic
oscillator:

Rule #1. An = +1

In addition, the factor (dz/dq)o in the expression for the dipole transition moment
gives

Rule #2. The dipole moment of the molecule
must vary during a vibration.

Can you use the second rule to understand why homonuclear diatomics are infrared
inactive? Does this mean homonuclear diatomics are not vibrating?

Carbon dioxide (O=C=0) has no permanent dipole, but it is strongly infrared active.
(Go ask the environmentalists). Why?

Transitions with An = +2 (called overtones), forbidden by rule #1, are in fact routinely

observed, though relatively weak in intensity. Can you explain this? Is quantum
mechanics wrong?

Vibration of Polyatomic Molecules

So far we have only considered the vibration of diatomic molecules. The vibration of
polyatomic molecules (such as H,O, CO,, CH4, CsHs) is more complicated, but it can
be easily understood using the harmonic oscillator approximation and the concept of

normal coordinates.

Consider a molecule containing N nuclei (e.g., N =5 for CH4). A complete description
of the motion of the molecule in three-dimensional space requires the specification of
three velocity components vy, vy, Vv, for each of the N nuclei, for a total of 3N velocity
variables, which are often called degrees of freedom.



Of the 3N total degrees of freedom, three are used to specify the motion of the center
of mass of the molecule through space. These three coordinates are called
translational degrees of freedom.

For linear molecules (such as N2 or CO3), with all nuclei on a single axis, there are
two rotational axes, and therefore two rotational degrees of freedom.

Nonlinear molecules (such as H,O or CHa) have three rotational axes and therefore
three rotational degrees of freedom.

The coordinates remaining, after translation and rotation are specified, must describe
the vibrational motion of the nuclei, so

linear molecules 3N —3—-2 = 3N -5 vibrational degrees of freedom

nonlinear molecules 3N —3 -3 = 3N — 6 vibrational degrees of freedom

Examples of Degrees of Freedom

Molecule Total Translational Rotational Vibrational
HCI 6 3 2 1
0=C=0 9 3 2 4
H.O 9 3 3 3
NH3 12 3 3 6
CH, 15 3 3 9

The potential energy of a vibrating molecule is a function of the Nvi, = 3N — 5 (for
linear molecules) or 3N — 6 (for nonlinear molecules) vibrational coordinates. If the
displacements from the equilibrium values of these coordinates (no compression and
no stretching) are denoted by

d1, 92, 03, ..., Onvib



For a single harmonic vibration, Hooke’s law states that the restoring force
F=-kq

Is proportional to the displacement q with force constant k. Integration of —Fdq = kqdq
gives the potential energy

potential energy = % kg®

Extending these ideas to a polyatomic molecule with Ny, vibrational degrees of
freedom gives the expression

1 Nyib  Nyip 82\/ 1 Nyipb  Nyip
V(ql’qz""’quib):_Z Z— qiqj :_Z Zkij qiqj
i=1  j=1 aqlaqj 2 i=1  j=1

for the potential energy with force constants ki;.

Cross-terms such as ki, ka2, etc. representing interactions between the vibrations make
it very difficult to solve Schrodinger’s equation for polyatomic vibration.

Using an ingenious mathematical procedure based on matrix diagonalization and
eigenvalues, we can transform from the g; coordinates to a new set of normal
coordinates Q; that diagonalize the matrix of force constants to give

VAQ, Qs Quii) :%f KiQi2

i=1

In terms of normal coordinates, the Hamiltonian operators for the normal vibrations are



I:Ivibi:_h— d +E%KiQi2
’ 2/1. inz i=1

We have already solved Schrodinger’s equation for this operator! For the ith vibration,
the energy levels are

E’=(n +%)hvi n=0,1,2,3, ...

where v; is the fundamental frequency for the ith normal vibration.

Summing over all of the normal vibrations give the total vibrational energy for a
polyatomic molecule:

=30+ )y

This result is important because it means that under the harmonic oscillator
approximation, the vibrational motion of a polyatomic molecule can be

represented as the sum of Nvib independent vibrations, each with a characteristic
fundamental frequency.



H20

A water molecule has three degrees of vibrational freedom. The normal modes are:

PRI

Symmetric stretch Asymmetric stretch Bend
(3.65 x 103cm ™) (3.76 x 10> cm™"') (1.60 x 103cm™!)

CO2

A carbon dioxide molecule has four degrees of vibrational freedom. The normal modes
are:

s ? ; doubly

degenerate
—0—0 0 <00 © 0—0—0 O
Symmetric stretch Asymmetric stre_lclh Bleonzd .
(infrared inactive) (2.35 x 10°cm™") (6.5 x cm

There is no change in the dipole moment during the symmetric stretch, so it is infrared
inactive. The asymmetric stretch and the two bending modes produce oscillating
dipoles, so they are infrared active. The two bending modes are degenerate. As a result,

CO: has only two fundamental lines in its infrared spectrum although there are four
normal modes.



Rotational-Vibrational Spectra for Diatomics

It is important to realize that the rigid rotor and harmonic oscillator are models that
only approximately represent real diatomic models. Using measured transition
frequencies, it is easy to measure departures from these models caused by

¢ anharmonicity (deviations from Hooke’s law)

¢ centrifugal stretching (bond lengths increase slightly with J)

¢ vibration-rotation coupling (vibration causes small changes in )
Nevertheless, it is a good first approximation to assume that vibrational and rotational

energies of diatomics are independent and given by the harmonic oscillator and rigid
rotor equations

E,=(n +%)hv0 +BJ(J +1)

With fundamental vibrational frequency

1 [k
V =— |—
27\ U

and rotational constant (I is the moment of inertia)

B=__
21



Pure Rotational Spectra  Transitions between states with different rotational
quantum numbers J but identical vibrational quantum numbers n

nJ - nJ (An=0, AJ==%1)

produce pure rotational spectra which are usually measured by microwave absorption
spectroscopy.

For absorption (J’ = J + 1), the allowed
pure-rotation transitions n, J — n, J’ for a rigid rotor are:

n0 - n,1 AE =B(1)(1+1) — B(0)(0+1) = 2B

nl - n,?2 AE = B(2)(2+1) — B(1)(1+1) = 4B

n2 —» n3 AE = B(3)(3+1) — B(2)(2+1) = 6B

n3 —»> n4 AE = B(4)(4+1) — B(3)(3+1) =8B
etc.

The predicted spectra are series of equally spaced absorption frequencies with
spacing 2B. The most intense transition corresponds to the rotational level J that is
most highly populated according to the Boltzmann distribution law (more on that
later).

Frequency

g




Rotational-Vibrational Spectra Absorption of photons at higher frequencies
(usually in the infrared) causes transitions between different vibrational and rotational
levels.

nJ - n+1J (An=1, AJ==%1)

The difference in vibrational energy in this case is (n + 1 + ¥2)hvg — (n + %2)hvo = hvy.

Using E  =(n +%)th +BJ(J +1), we get:

The series of transitions with An = +1, AJ = +1, called the R Branch, occurs at the
frequencies:

n,0 — n+l,1 AE = hvo + B(1)(1+1) — B(0)(0+1) = hvo + 2B
nl — n+l,2 AE = hvg + B(2)(2+1) — B(1)(1+1) = hvp + 4B
n,2 — n+l,3 AE =hvp + B(3)(3+1) — B(2)(2+1) = hvo + 6B
n,3 —» n+l, 4 AE = hvo + B(4)(4+1) — B(3)(3+1) = hvo + 8B

etc.

The series of transitions with An = +1, AJ = -1, called the P Branch, occurs at the
lower frequencies:

n0 — n+l,-1 not observed, states with J = —1 do not exist

nl — n+l,0 AE = hvp + B(0)(0+1) — B(1)(1+1) = hvo — 2B
n2 — n+l, 1 AE =hvo + B(1)(1+1) — B(2)(2+1) = hvo — 4B
n,3 — n+l,2 AE = hvg + B(2)(2+1) — B(3)(3+1) = hvo — 8B

etc.




Rotational-Vibrational Transitions
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P and R Branches in the Infrared Spectrum of CO
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There is a “gap” (missing line) near 4260 cm™ because PO (J=0to J=-1) and R-1 (J
= —1to J = 0) transitions are impossible. (J = -1 is not a valid quantum number.)



Analysis of High Resolution Rotational-Vibrational Spectra

The expression
1
E,=( +§)hv0 +BJ(J +1)

for the energy levels of a combined rigid rotor and harmonic oscillator is a good
first approximation for the rotational-vibrational energies of diatomic molecules.

But with high resolution spectrometers, it is easy to measure deviations from the
harmonic oscillator-rigid rotor model. These deviations provide useful additional
information about molecules.

Centrifugal Distortion  Real molecules are not rigid rotors! As the rotation rate

increases, chemical bonds stretch slightly. The increase in bond length increases the
moment of inertia and therefore decreases the spacing of the rotational energy levels.

To account for this behavior, the term —DJ?*(J +1)%is added to the expression for the
rotational energy levels to give

E, =BJ(J +1) - DJ*(J +1)’

D is the centrifugal distortion constant. Notice the minus sign in front of D.

For absorption:

AE = Ej—E; =2B(J+1) —4D(J + 1)°

For emission:

AE =E;—Ej; =-2B(J+1) +4DJ



In practice, the frequencies and energy differences for spectroscopic transitions are

often quoted in wavenumbers. A frequency v (in Hz) is converted to a frequency Vin
wavenumbers by dividing by the speed of light. An energy difference (in Joules) is
converted to wavenumbers by dividing by hc.

~ V ~ AE
V=— AE =—
C hc
Rotational Absorption Spectrum of H3Cl
V., =2BJ(J +1)-4D(J +1)°
Transition V. =2BJ(J +1) B =10.395 cm*
J>J+1 ¥ _/em* AV, _/em*® B=10.34 cm® D =0.0004 cm
3—-4 83.03 82.72 83.06
21.07
4 55 104.10 103.40 103.75
20.20
556 124.30 124.08 124.39
20.73
6—>7 145.03 144.76 144.98
20.48
7—>8 165.51 165.44 165.50
20.35
8—-9 185.86 186.12 185.94
20.52
9510 206.38 206.80 206.30
20.12
10 » 11 226.50 227.48 226.56

rms deviations: 0.55 0.14



Anharmonicity  The potential energy of a chemical bond passes through a minimum
value at the equilibrium bond length Ro. Using a Taylor series expansion, the potential
energy near the minimum is accurately represented by a Taylor series expansion

truncated at the term in (R — Ro)2.

1d’v
2dR?

V(R)=V(R)+ o (R-R)+ 2 0 (R-R) =V (R) +- KRR’

dV/dR is zero in the expression (why?). The second derivative d?V/dR? at the minimum
gives the force constant k for Hooke’s Law.

But in general, potential energy curves for chemical bonds are not parabolic
functions of the bond length. As the vibrational energy increases, the bond weakens.
Eventually, the molecule shakes itself apart. The decrease in the force constant with
increasing vibrational energy leads to a decrease in the spacing of the vibrational
energy levels.

harmonic potential

V(R)

: —
Morse potential

\

internuclear distance R



A more realistic potential energy curve over the whole range of R values is given by
the Morse function

V(R) =D,{1-exp[-a(r -R,)] |’

The Morse potential gives zero potential energy at the equilibrium bond length Ro. As
the internuclear distance R approaches infinity, V(R) approaches the bond dissociation
energy, De.

Solving Schrodinger’s equation using the Morse potential (instead of the harmonic
potential) gives the vibrational energy levels

1 1
E =v.(n+>)=x.V.(n+>)°
n e( 2) e e( 2)

with

Ve IS the fundamental vibration frequency, corrected for anharmonicity, and X is the
anharmonicity constant.

Fitting the corrected energy equation

E =ve(n+%)—xeve(n+%)2 +BJ(J +1)—DI*(J +1)’

to measured high resolution rotational-vibrational spectra gives moments of inertia,
centrifugal distortion constants, accurate fundamental vibration frequencies, bond
dissociation energies, and anharmonicity constants.



Spectroscopic Parameters for Ground-State Diatomic Molecules

Molecule B/cm™ D/em™?  §/em™  xi/em™? Ro/pm  De/kd mol™

H: 60.80 0.0463  4395.2 117.90 74.16 431.8
H3>Cl 10.591 0.0005 2989.7 52.05  127.46 428.6
H™Br 8.473 0.0003 2649.7 4521 1413 361.8
12c160 1.931 0.0001 2170.2 13.46 11281 1071.6
1UN2eQO 1.705 0.0001 1904.0 13.97  115.08 626.1
NN 2.010 0.0001 2359.6 14.46  109.4 941.2
180160 1.446 0.0001 1580.4 12.07  120.74 490.1
$SC3HCI 0.244  0.0001 564.9 4.0 198.8 238.8
Li"Li 0.673  0.0009 35.14 259  267.2 99.4
2Na?Na 0.155 0.0001 159.2 0.76  307.8 70.4
SCIP0 0.516 0.0001 793.2 9.9 162.81 252.4

25NaH 4901 0.0001 1172.2 19.72  188.73 202.0




Raman Spectroscopy

For a molecule to be microwave or IR active, it must have a permanent dipole moment
or a dipole moment that changes with the vibrations, respectively.

In addition to permanent dipoles, it is also possible to have induced electric dipole
moments generated by electromagnetic radiation. If the electric cloud of a molecule is
not spherically symmetric, for example, an oscillating electric field can produce small
transient excesses and deficiencies in the electron density on opposite sides of the
molecule, which appears as a small oscillating dipole moment.

The distortion of the electron density in an oscillating electric field is determined by its

polarizability. In addition to a permanent dipole moment that a molecule might have,
an applied electric field induces the transient (time-dependent) dipole moment

A(t) = a E(t)

given by the polarizability tensor ¢ . Tensor element a.i gives the dipole moment
along the i-axis generated by the component of the electric field along the k-axis.

=
Q
Q
Q
-




Raman spectroscopy deals with rotational and vibrational transitions caused by the
Interactions of radiation and induced dipole moments. Raman transitions, in general,
are much weaker in intensity than transitions generated by permanent dipoles (why?).
With high intensity laser radiation sources, however, this is limitation can be
overcome.

A molecule must have an anisotropic polarizability to be Raman active. In other
words, its polarizability must not be the same in every direction.

Selection Rules for Raman Rotational Spectra

All linear molecules, including all diatomics (homonuclear or heteronuclear), have
anisotropic polarizabilities and are therefore Raman active. The electron density in Hy
molecules, for example, is more strongly distorted along the bond axis. This is
important because Raman spectra can be measured for infrared inactive molecules that
lack a permanent dipole.

Spherical rotors, such as SFs and CHa, have isotropic polarizabilities and therefore do
not have rotational Raman spectra. They do not have permanent dipole moments, and
are therefore microwave inactive. (Does this mean that spherical rotors are not
rotating?)

Rotational Raman selection rules:

Linear Rotors AJ=0, 2

Symmetric Rotors AJ=0, £1, £2 and AK=0

The AJ = 0 transitions do not lead to changes in the energy or the frequency of
scattered photons. They contribute to the unshifted Rayleigh radiation (important for
light scattering measurements).

The AJ = £2 transitions can be understood in terms of conservation of momentum by
noting that two spin-1 photons are involved (the incoming photon and the scattered
photon), so the maximum change in the angular momentum quantum number is £2.




Raman Rotational Spectra for Linear Rotors

The selection rules AJ =0, £2 can be used to predict the form of Raman spectra for
linear rotors, such as diatomic molecules.

Rayleigh Line  For incident radiation with frequency v, the Rayleigh line for
radiation scattered with no change in energy appears at frequency v;. (AJ = 0)

Stokes Lines  When a molecule makes a transition with AJ = +2, the scattered
radiation leaves the molecule with higher rotational energy, so there is a decrease in
the frequency and the energy of the scattered radiation. The transitions with AJ = +2
are called the Stokes lines.

For incident radiation at frequency Vo, the rotational energy equation E; = BJ(J + 1) can
be used to predict transitions at the frequencies v,— (6B/h), vi— (10B/h), vi— (14B/h), v
— (18B/h), ... with spacing 4B/h.

J — J+ 2 (Stokes lines (molecules pick up energy)):

0> 2 AE = B(2)(2+1) — B(0)(0+1) = 6B

1 3 AE = B(3)(3+1) — B(1)(1+1) = 10B

2 4 AE = B(4)(4+1) - B(2)(2+1) = 14B

3> 5 AE = B(5)(5+1) — B(3)(3+1) = 18B
etc.

Anti-Stokes Lines  When a molecule makes a transition with AJ = -2, the scattered
radiation leaves the molecule with lower rotational energy, so there is a increase in the
frequency and the energy of the scattered radiation. Transitions with AJ = -2 are called
the anti-Stokes lines.




For incident radiation at frequency v, the energy equation E; = BJ(J + 1) can be used
to predict transitions at the frequencies v, + (4B/h), v, + (10/h), v + (14B/h), v, +
(18B/h), ... with spacing 4B/h once again.

J = J -2 (Anti-Stokes lines (molecules lose energy)):

2 50 AE = B(0)(0+1) — B(2)(2+1) = —6B
351 AE = B(1)(1+1) — B(3)(3+1) = —10B
42 AE = B(2)(2+1) — B(4)(4+1) = —14B
5 > 3 AE = B(3)(3+1) — B(5)(5+1) = —18B
etc.
Rayleigh Line
(unshifted)

Pure Raman Rotational
Spectrum for CO»

higher frequencies | lower frequencies
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Raman Vibrational Spectra for Diatomics

The main selection rule for vibrational Raman transitions is that the polarizability of
the molecule must change during vibration. The vibration of homonuclear and
heteronuclear molecules causes the electron clouds to expand and contract, and so the
polarizability changes. Both kinds of diatomics are therefore vibrationally Raman
active. (In contrast, only heteronuclear diatomics are vibrationally infrared active.)

The selection rule for vibrational Raman transitions is An = £1. The anti-Stokes lines
are shifted to higher frequencies because the scattered photon picks up energy from an
excited vibrational state and leaves the molecule in a lower-energy state (An = -1).
The spacing of vibrational energy levels is large compared to thermal energies at room
temperature. Consequently, most molecules are in their ground vibrational states under
ambient conditions, and vibrational anti-Stokes lines are relatively weak.

The lower-frequency Stokes lines corresponding to An = +1 (the scattered radiation
leaves the molecules in a higher vibrational state) are more intense.

In gas-phase Raman spectroscopy, simultaneous vibrational and rotational transitions
produce a band structure with multiple lines.

In the terminology used by spectroscopists, the O branch, Q branch, and S branch
correspond to Stokes lines (An = +1) with the following branches:
O branch Al =-2

Q branch AJ= 0

S branch Al =+2



n—->n+1J — J+2 (SBranch):

0 2 AE = hvg + B(2)(2+1) — B(0)(0+1) = hvo + 6B

1—> 3 AE =hvy + B(3)(3+1) — B(1)(1+1) = hvo + 10B

2 4 AE = hvg + B(4)(4+1) — B(2)(2+1) = hvo + 14B

355 AE = hvg + B(5)(5+1) — B(3)(3+1) = hvo + 18B
etc.

n—->n+1J — J (QBranch):

J—> J AE:hVo

n—>n+1J — J-2 (O Branch):

2— 0 AE = hvp + B(0)(0+1) — B(2)(2+1) = hvo — 6B

3> 1 AE =hvgp +B(1)(1+1) — B(3)(3+1) = hvo — 10B

4 — 2 AE =hvy +B(2)(2+1) — B(4)(4+1) = hvo — 14B

553 AE = hvg + B(3)(3+1) — B(5)(5+1) = hvo — 18B
etc.

The information available from Raman spectroscopy adds to that from infrared
spectroscopy because homonuclear diatomics can be studied, providing force
constants, bond lengths, fundamental frequencies, and other information.




Vibrational-Rotational Raman Spectrum for a Diatomic Molecule
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