
         Spectroscopy 
 

   using electromagnetic radiation to study atoms and molecules 
 

 

   one of the most important applications of quantum mechanics 

   uses radiation to determine atomic and molecular properties 

   provides molecular structures with extraordinary accuracy 

   monitors molecular events on timescales down to femtoseconds 

   many practical applications, including analytical chemistry 

 

 

The fundamental idea behind spectroscopy:  the energy of absorbed or emitted photons 

is related to the difference between the quantum mechanical energy levels of atoms or 

molecules involved in the transition 

 

 

   hv  = hc/ = hc~   =  Efinal − Einitial 
 

 

~  =  1/  is the wavenumber of the radiation, the number of waves per unit length. 

 

 

 

    

    
 

 



 

 

  A portion of the visible spectrum of iodine vapor: 

 

 

 

   
 

 

Every one of these transitions can be assigned to well defined initial and 

final quantum states! 

 

 

 

 

 



 

The energies of the photons indicate the kinds of transitions: 

 

 

 radio-frequency transitions between nuclear spin states (nmr spectroscopy) 

 

 microwaves  transitions between rotational and electron spin states 

 

 infrared   vibrational transitions (superimposed on rotational states) 

 

 visible/uv   transitions between electronic energy levels 

 

 x-rays   ionization and bond dissociation 

 

 gamma rays  nuclear energy levels     

 

 

  
 

 

 



The energy levels of atoms and molecules decide the possible frequencies and 

wavelengths of absorbed and emitted radiation for atomic and molecular transitions.  

But what transitions are probable (most intense)? 

 

Electromagnetic radiation consists of propagating oscillations in the strengths of the 

electric and magnetic fields. 

   
Atoms and molecules are collections of positively-charged nuclei and negatively-

charged electrons. So, the strength of the interaction between electromagnetic radiation 

and atoms or molecules is governed the electric dipole moment operator 
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for the distribution of electrical charges qi at positions ir


. In SI units, an electric dipole 

is expressed in C m. In practice, the non-SI unit “Debye” is often used. 

 

   1 Debye = 1 D = 3.33564  10−30 C m  

 

Molecules with large permanent dipoles (i.e., large permanent separation of electrical 

charge, such as HCl) therefore interact relatively strongly with radiation  
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producing the most intense (most probable) transitions. Molecules and atoms can also 

have fluctuating (transient) electric dipole moments that can interact with radiation, 

though more weakly.    

 



Time-Dependent Perturbation Theory Gives the Selection Rules for Transitions  

 

Spectroscopic selection rules decide which transitions between quantum mechanical 

states are the most intense.  

 

Until now, we have been considering wave functions obtained by solving the  

time-independent Schrödinger equation for stationary states of isolated atoms 

and molecules 
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But transitions from one state to another, as the terminology implies, are transient 

processes described by the time-dependent Schrödinger equation  

 

 

     t

tr
itrH




=

),(
),(ˆ





 

 

Time-Dependent Perturbation Theory     To solve this equation for spectroscopic 

transitions, the time-dependent part of the Hamiltonian operator 
)1(Ĥ is treated as a 

small perturbation superimposed on the time-independent Hamiltonian 
)0(Ĥ  for 

isolated atoms and molecules in stationary states. 
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To solve the time-dependent Schrödinger equation  
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it’s convenient to simplify the equations by assuming that the electric field of the 

electromagnetic radiation oscillates in the z-direction 

 

 

     )2cos()( 0 vtEtE z =  

 

 

v is the frequency of the radiation and E0z is the amplitude of the oscillations in the 

electric field. If z is the dipole moment of a molecule in the z-direction, the energy of 

interaction between the radiation and the molecule is  
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If the molecule has no dipole moment in the z-direction (no separation of charge, 

permanent or temporary, along the z-axis), there is no interaction. 

 

Transitions from State 1 to State 2     Consider possible transitions between stationary 

states 1 and 2 with wave functions 1 and 2 (note:  lower-case psis!) satisfying the 

time-independent Schrödinger equations 
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)0(Ĥ for the stationary states does not depend on the time. As a result, it’s relatively 

easy to show (try it!) that the corresponding wave functions (upper-case psis!)  
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are solutions of the time-dependent Schrödinger equations 
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Suppose that the system is initially in state 1, and the perturbation (the applied 

radiation field) is “turned on” at time t = 0. The subsequent time-evolution of the state 

of the molecule is then represented by the linear combinations of states 1 and 2 
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with time-dependent mixing coefficients a1(t) and a2(t) to be determined. The system is 

initially in state 1, so the initial conditions are 
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Substituting the expression for ),( tr
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gives the rather complicated expression 
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But wait!  The first two terms and the last two terms in this equation cancel (why?) to 

give 
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This equation can be multiplied by 2* and integrated over the spatial coordinates  
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1 and 2 are normalized and orthogonal (“orthonormal”), and so   
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Substituting the spatial (i) and time-dependent (
/1e

tiE−
) factors for 1 and 2 
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leads to further simplification  
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For weak perturbations, relatively few atoms or molecules make the transition out of 



the initial 1 state. The term proportional to a2(t) can therefore be neglected, at least 

initially, but not the term proportional to da2/dt  (why?),  to give 
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The derivative da2/dt is especially interesting for spectroscopy. It gives the rate at 

which the population of molecules in state 2 builds up as a result of the transition 

from the initial state 1. 

 

The time-dependent perturbation Hamiltonian 
)1(Ĥ is proportional to the product of the 

electric dipole moment and the oscillating electric field (assumed for convenience to be 

along the z axis) 
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So the expression for da2/dt  becomes 
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Defining the dipole transition moment between states 1 and 2    

 

 

 

   d*)( 1221 = zz  

 



we find 
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Integrating between time t = 0 (when a2 for the amplitude of the final state is zero) and 

time t gives 
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Why bother to do all this?     The results are fundamental and important: 

 

 

1.  For absorption spectroscopy (the final state has higher energy, E2 > E1) the 

important resonance denominator E2 − E1 − hv causes the second term to be 

relatively large determining a2(t) when  

 

 

    E2 − E1  =  E  =   hv         absorption 

 

 

For emission spectroscopy (the final state has lower energy, E2 <  E1) the resonance 

denominator E2 − E1 + hv causes the first term to be relatively large when  

 

 

    E1 − E2  =  E  =   hv  emission 

 

 

 

This is the famous Bohr frequency condition:   



 

 

When a system makes a transition from one state to another, it absorbs (or emits) a 

photon whose energy is equal to the difference in the energies of the two states. 

 

 

 2.  There is no absorption or emission if the dipole transition moment (decided by the 

stationary initial and final states) is zero. 

 

 

3.  The strength of the absorption is proportional to the dipole transition moment and 

the amplitude of the oscillating electric field.  

 

 

 

    Application to the Spectroscopic Selection Rules for Diatomic Rigid Rotors 

 

The time-dependent perturbation theory of spectroscopic transitions combined with the 

properties of spherical harmonics can be used to derive the selection rules for linear 

rigid rotors. These rules give the observed rotational spectra of diatomics and other 

molecules. 

 

From last term, the wave functions for rigid rotors are spherical harmonics ),( M
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with rotational energies  
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 I is the moment of inertia  
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Spherical harmonic functions are also eigenfunctions of the operator for the square of 

angular momentum 

 

 

  ),()1(),(ˆ 22  M

J

M

J YJJYL +=   

 

 

and the operator for the z-component of the angular momentum 
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with respective eigenvalues )1(2 +JJ  and  M .  The energy of the rotor and the 

corresponding squared angular momentum differ only by a factor of  I/2 (why?). 

 

 

    But what about the spectroscopy? 
 

 

To see if transitions between different rotational states are allowed (i.e., probable), 

time-dependent perturbation theory suggests that we look at the dipole transition 

moment between the different states 

 

 

     M, J   → M, J   
 

 

Using z = cos, we get 
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Notice that the dipole moment must be nonzero for the transition moment to be 

nonzero. So, according to the rigid rotor model: 

 

 

 Rule #1. A diatomic must have a permanent dipole to have a rotational spectrum. 

 

 

Why? It is instructive to think about what happens when a diatomic molecule is placed 

in an electric field (assumed to be in the z-direction). 

 

To generate an energy change, and therefore an interaction between the electric field 

and the molecule, there must be a separation of charge along the z axis. 

 

   electric potential energy     E
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Why is there a minus sign? The electric field is defined as the negative gradient in the 

electric potential. It gives the direction in which a mobile positive charge would move. 
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So a positive electric field combined with a positive dipole has negative potential 

energy. 

 

 



 

 

              Interaction of an Electric Field with a Diatomic Molecule 

 

 

 

   
 

 

 

 

Next we ask:  for what values of the quantum numbers M, J, M, J is the transition 

moment nonzero? From our treatment of a three-dimensional rotor 
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where NM,J is a normalization constant and PJ
M(cos) is a Legendre function. Letting 

x = cos and noting that dx = −sind, the expression for the transition moment dipole 

becomes 
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The integral in  vanishes unless M = M. This condition gives selection rule #2: 

 

    #2.  M  =  0  
 

Why?  Notice from the diagram above that the electric field exerts a twisting force 

(torque) on the molecule affecting its rotation in a plane parallel to the z axis, so there 

is no change in the z-angular momentum (rotation perpendicular to the z-axis). 

 

 Integration over  for M = M gives a factor of 2 :  
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To complete the selection rules for diatomics, we can substitute result from the 

recursion rule for Legendre functions 
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into the integral for the transition dipole moment to get 
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The PJ
M(x) functions are orthonormal, so integrals over PJ+1

M(x) PJ′
M(x) and 

PJ−1
M(x) PJ′

M(x) will be nonzero only if J′ = J + 1 or J′ = J − 1, respectively. This 

result gives the final selection rule for the rotational transitions for diatomics: 

 

 

     #3.    J = ±1 
 

 

Why?  Photons (spin 1) have angular momentum too!  J = 1 corresponds to the 

absorption of a photon and J = −1 corresponds to emission of a photon. 

 

 

 

 Rotational Spectra of Polyatomic Molecules 

 

Up to now, only the rotation of diatomic molecules has been analyzed. In general, the 

rotation of any molecule can be expressed in terms of the moments of inertia about any 

three perpendicular axes. 
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This sum over all N nuclei with masses mi at a distance ri from the axis of rotation.  

 

The convention is to label the three moments of inertia Ia, Ib, and Ic  with the axes 

chosen so that Ic  ≥  Ib  ≥  Ia.  

 

 

 

 

 

 

 

 



                             Molecular Moments of Inertia 

                         (m is the total mass of the molecule) 

 

                   
 

 

 



Diatomics and Linear Rotors 

 

Linear molecules (e.g., HCl, CO2, C2H2) have all nuclei on a single axis. In this case 

the moment of inertia around the bond axis is zero and  

 

Ic = Ib = I          Ia = 0  
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The energy of a photon (hv) is proportional to its frequency. And because 1/ = v/c, 

dividing a frequency by the speed of light gives wavenumbers. Historically, 

spectroscopists are fond of expressing energies in these units: 
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The quantity 
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is called the rotational constant of a molecule. It provides the convenient expression  
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for rotational energies in wavenumbers. 



 

Spherical Rotors 

 

Molecules such as CH4 and SF6 have three identical moments of inertia. 

 

  

             Ic  =  Ib  =  Ic  =  I    
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Symmetric Rotors 

 

In symmetric rotors, two moments of inertia are identical, but different from the third 

moment of inertia, as for CH3Cl, NH3, C6H6. 

 

The unique axis of the molecule is called the principal axis and designated by I. The 

two equivalent moments of inertia are designated by I⊥. 

 

 

Prolate symmetric rotors (e.g., CH3Cl) have I <  I⊥.           (Ic  =  Ib  = I⊥,   Ia  =  I) 

(like footballs) 

 

Oblate symmetric rotors (e.g., C6H6) have I  >  I⊥.        (Ic  =  I ,  Ib = Ia =  I⊥) 

(like pancakes) 

 



The rotational energy in this case is the sum of the angular momentum for each axis 

divided by twice the moment of inertia. 

 

For prolate rotors (Ic  =  Ib)   
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The total angular momentum is L2 = La
2 + Lb

2 + Lc
2, and so  
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From the quantum mechanics of rotation motion, we know that the total angular 

momentum squared can have the values 
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We also know that the angular momentum for any particular axis (say the a-axis) is 

restricted to the values  
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These considerations give the energy levels 
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and the rotational constants 
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In cases where K = 0, there is no angular momentum about the principal axis, and the 

energy levels depends only on I⊥.  When K = J, most of the angular momentum arises 

from rotation around the principal axis. Notice that the sign of K does not affect the 

energy. The sign of K indicates the direction of rotation, clockwise or 

counterclockwise, which does not change the energy.  

      

 

 Selection Rules for Rotational Spectra of Polyatomic Molecules 

 

For a molecule to have allowed transitions between different rotational states, it must 

have a permanent dipole moment. This means that homonuclear diatomics (such as 

O=O), symmetrical linear molecules (such as O=C=O), and spherical rotors (such as 

CH4) cannot have rotational spectra.  

   

For unsymmetrical linear molecules (such as C=O), the selection rules J = 1 and  

M = 0 derived previously apply. 

 

For symmetric rotors (such as NH3), we have J = 1 and K = 0. Any dipole moment 

possessed by a symmetric rotor must lie along the principal axis. Such a molecule 

cannot be accelerated into different rotational energy levels about this axis by the 

absorption of radiation. A dipole moment perpendicular to the principal axis would be 

required to do this.  

 

But … In practice, using long-path length absorption cells, weak “forbidden” 

rotational transitions (e.g., for SiH4) can be observed. Why?  

 



      Spectroscopic Selection Rules:  Diatomic Harmonic Oscillators 
 

To illustrate the selection rules for molecular vibration, we can apply time-dependent 

perturbation theory to the diatomic harmonic oscillator.  

 

Recall that the harmonic oscillator wave functions are 
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Nn is a normalization factor, q is the displacement of the positions of nuclei 1 and 2 

from the equilibrium bond length R0 (stretched:  q > 0, compressed:  q < 0) 
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and  is an abbreviation for  
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k is the force constant (a measure of the “stiffness” of the bond),  is the reduced mass. 
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and  Hn(1/2q)  is the nth Hermite polynomial. 
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The energy levels for a harmonic oscillator are equally spaced 
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with En+1 − En = E = (h/2)(k/)1/2. 
 

Experiments show that homonuclear diatomics, such as N2, have no vibrational spectra 

of significant intensity. For heteronuclear diatomics, such as NO, only one relatively 

intense vibrational frequency (called the fundamental frequency) is observed: 
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Why?  Shouldn’t there be an infinite number of n  n transitions 1  2, 1  3, 1 

 4, …, 2  3, 2  4, 2  5, … with frequencies v0, 2v0, 3v0, 4v0, …?          

 

To see if transitions between different vibrational states are allowed (i.e., probable), 

time-dependent perturbation theory suggests that we look at the dipole transition 

moment (z)n,n between the different vibrational states 

 

 

     n   → n      transition 
 

 

The degree of charge separation, and therefore the dipole moment along the bond axis 

(assumed to be the z-axis), can change as the bond length oscillates, so the dipole 

moment, in general, is a function of q (the deviation from the equilibrium bond length).  
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The dipole moment can be expanded in a Taylor series about the value 0 at the 

equilibrium bond length (q = 0) 
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to give 
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which is equivalent to the two integrals 
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Because wave functions for the harmonic oscillator are orthogonal, the first integral is 

zero. To evaluate the second integral, the recursion formula for Hermite polynomials 
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is helpful. Defining   =  1/2q gives  ( is the Greek letter xi, not to be confused with 

, the Greek letter zeta!) 
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The Hermite polynomials are orthogonal, so the dipole transition moment is zero 

unless 

 

   n = n − 1                  or                n = n + 1                                         
 



This gives the important selection rule for the allowed transitions for the harmonic 

oscillator: 

 

        Rule  #1.  n  =   1 

 

In addition, the factor (d/dq)0 in the expression for the dipole transition moment 

gives 

 

 

  Rule  #2.    The dipole moment of the molecule  

     must vary during a vibration. 

 
 

Can you use the second rule to understand why homonuclear diatomics are infrared 

inactive? Does this mean homonuclear diatomics are not vibrating? 

 

Carbon dioxide (O=C=O) has no permanent dipole, but it is strongly infrared active. 

(Go ask the environmentalists). Why?  

 

Transitions with n = 2 (called overtones), forbidden by rule #1, are in fact routinely 

observed, though relatively weak in intensity. Can you explain this? Is quantum 

mechanics wrong?  

 

   Vibration of Polyatomic Molecules    

 
So far we have only considered the vibration of diatomic molecules. The vibration of 

polyatomic molecules (such as H2O, CO2, CH4, C6H6) is more complicated, but it can 

be easily understood using the harmonic oscillator approximation and the concept of 

normal coordinates. 

 

Consider a molecule containing N nuclei (e.g., N = 5 for CH4). A complete description 

of the motion of the molecule in three-dimensional space requires the specification of 

three velocity components vx, vy, vz for each of the N nuclei, for a total of 3N velocity 

variables, which are often called degrees of freedom. 



 

Of the 3N total degrees of freedom, three are used to specify the motion of the center 

of mass of the molecule through space. These three coordinates are called 

translational degrees of freedom. 

 

For linear molecules (such as N2 or CO2), with all nuclei on a single axis, there are 

two rotational axes, and therefore two rotational degrees of freedom. 

 

Nonlinear molecules (such as H2O or CH4) have three rotational axes and therefore 

three rotational degrees of freedom. 

 

The coordinates remaining, after translation and rotation are specified, must describe 

the vibrational motion of the nuclei, so  

 

 linear molecules  3N − 3 − 2  =  3N − 5 vibrational degrees of freedom  

 

 nonlinear molecules  3N − 3 − 3  =  3N − 6 vibrational degrees of freedom  

 

 

    Examples of Degrees of Freedom 

 _______________________________________________________________ 

 Molecule  Total  Translational  Rotational   Vibrational 

 HCl   6   3    2   1 

 O=C=O  9   3    2   4 

 H2O   9   3    3   3 

 NH3   12   3    3   6 

 CH4   15   3    3   9 

 _______________________________________________________________ 

 

 

The potential energy of a vibrating molecule is a function of the Nvib = 3N − 5 (for 

linear molecules) or 3N − 6 (for nonlinear molecules) vibrational coordinates. If the 

displacements from the equilibrium values of these coordinates (no compression and 

no stretching) are denoted by 

 

     q1, q2, q3, …, qNvib   
 



For a single harmonic vibration, Hooke’s law states that the restoring force 

 

      F = −kq  
 

is proportional to the displacement q with force constant k. Integration of −Fdq = kqdq 

gives the potential energy 
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Extending these ideas to a polyatomic molecule with Nvib vibrational degrees of 

freedom gives the expression 
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for the potential energy with force constants kij. 

 

Cross-terms such as k12, k32, etc. representing interactions between the vibrations make 

it very difficult to solve Schrödinger’s equation for polyatomic vibration. 

 

Using an ingenious mathematical procedure based on matrix diagonalization and 

eigenvalues, we can transform from the qi coordinates to a new set of normal 

coordinates Qi that diagonalize the matrix of force constants to give  
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In terms of normal coordinates, the Hamiltonian operators for the normal vibrations are 
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We have already solved Schrödinger’s equation for this operator! For the ith vibration, 

the energy levels are  
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where vi is the fundamental frequency for the ith normal vibration. 

 

Summing over all of the normal vibrations give the total vibrational energy for a 

polyatomic molecule: 
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This result is important because it means that under the harmonic oscillator 

approximation, the vibrational motion of a polyatomic molecule can be 

represented as the sum of Nvib independent vibrations, each with a characteristic 

fundamental frequency. 

 

 

 

 

 



H2O 

 

A water molecule has three degrees of vibrational freedom. The normal modes are: 

   

   

    
 

 

 

CO2 

 

A carbon dioxide molecule has four degrees of vibrational freedom. The normal modes 

are: 

  

 

 
 

There is no change in the dipole moment during the symmetric stretch, so it is infrared 

inactive. The asymmetric stretch and the two bending modes produce oscillating 

dipoles, so they are infrared active. The two bending modes are degenerate. As a result, 

CO2 has only two fundamental lines in its infrared spectrum although there are four 

normal modes. 

  



          Rotational-Vibrational Spectra for Diatomics    

 
It is important to realize that the rigid rotor and harmonic oscillator are models that 

only approximately represent real diatomic models. Using measured transition 

frequencies, it is easy to measure departures from these models caused by  

 

   anharmonicity (deviations from Hooke’s law) 

 

   centrifugal stretching (bond lengths increase slightly with J) 

     

   vibration-rotation coupling (vibration causes small changes in I) 

 

 

Nevertheless, it is a good first approximation to assume that vibrational and rotational 

energies of diatomics are independent and given by the harmonic oscillator and rigid 

rotor equations 
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With fundamental vibrational frequency 
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and rotational constant (I is the moment of inertia) 
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Pure Rotational Spectra     Transitions between states with different rotational 

quantum numbers J but identical vibrational quantum numbers n 

 

   n, J   →  n, J          (n = 0,  J =  1) 
 
produce pure rotational spectra which are usually measured by microwave absorption 

spectroscopy. 

 

                   For absorption (J = J  + 1), the allowed 

     pure-rotation transitions  n, J  → n, J for a rigid rotor are: 

 

 n, 0 →   n, 1  E = B(1)(1+1) − B(0)(0+1) = 2B 

 

 n, 1 →   n, 2  E = B(2)(2+1) − B(1)(1+1) = 4B 

 

 n, 2 →   n, 3  E = B(3)(3+1) − B(2)(2+1) = 6B 

 

 n, 3 →   n, 4  E = B(4)(4+1) − B(3)(3+1) = 8B 

    etc. 

  

The predicted spectra are series of equally spaced absorption frequencies with 

spacing 2B. The most intense transition corresponds to the rotational level J that is 

most highly populated according to the Boltzmann distribution law (more on that 

later). 

 

 

    



Rotational-Vibrational  Spectra     Absorption of photons at higher frequencies 

(usually in the infrared) causes transitions between different vibrational and rotational 

levels.  

  n, J   →  n + 1, J          (n = 1,  J =  1) 
 

The difference in vibrational energy in this case is (n + 1 + ½)hv0 – (n + ½)hv0 = hv0.  

 

Using )1()
2

1
(
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Jn
, we get: 

 

The series of transitions with n = +1, J = +1, called the R Branch, occurs at the 

frequencies:   

 

 n, 0 →   n+1, 1  E = hv0 +  B(1)(1+1) − B(0)(0+1) = hv0 + 2B 

 

 n, 1 →   n+1, 2  E = hv0 + B(2)(2+1) − B(1)(1+1) = hv0 + 4B 

 

 n, 2 →   n+1, 3  E = hv0 + B(3)(3+1) − B(2)(2+1) = hv0 + 6B 

 

 n, 3 →   n+1, 4  E = hv0 + B(4)(4+1) − B(3)(3+1) = hv0 + 8B 

 

    etc. 

 

The series of transitions with n = +1, J = −1, called the P Branch, occurs at the 

lower frequencies:   

 

 n, 0 →   n+1, −1 not observed, states with J = −1 do not exist 

 

 n, 1 →   n+1, 0  E = hv0 + B(0)(0+1) − B(1)(1+1) = hv0 − 2B 

 

 n, 2 →   n+1, 1  E = hv0 + B(1)(1+1) − B(2)(2+1) = hv0 − 4B 

 

 n, 3 →   n+1, 2  E = hv0 + B(2)(2+1) − B(3)(3+1) = hv0 − 8B 

 

    etc. 



     Rotational-Vibrational Transitions 

 

  
 

 

   P and R Branches in the Infrared Spectrum of CO 

    
 

There is a “gap” (missing line) near 4260 cm−1 because P0 (J = 0 to J = −1) and R−1 (J 

= −1 to J = 0) transitions are impossible. (J = −1 is not a valid quantum number.) 



 Analysis of High Resolution Rotational-Vibrational Spectra    

 
The expression 
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for the energy levels of a combined rigid rotor and harmonic oscillator is a good 

first approximation for the rotational-vibrational energies of diatomic molecules. 

 

But with high resolution spectrometers, it is easy to measure deviations from the 

harmonic oscillator-rigid rotor model. These deviations provide useful additional 

information about molecules. 

 

Centrifugal Distortion     Real molecules are not rigid rotors! As the rotation rate 

increases, chemical bonds stretch slightly. The increase in bond length increases the 

moment of inertia and therefore decreases the spacing of the rotational energy levels. 

To account for this behavior, the term 
22 )1( +− JDJ is added to the expression for the 

rotational energy levels to give 
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D is the centrifugal distortion constant. Notice the minus sign in front of D. 

 

For absorption: 

 

               E = EJ+1 − EJ  = 2B(J + 1)  − 4D(J + 1)3 
 

 

For emission: 

 

              E = EJ − EJ−1  = −2B(J + 1)  + 4DJ3 
 



In practice, the frequencies and energy differences for spectroscopic transitions are 

often quoted in wavenumbers. A frequency v (in Hz) is converted to a frequency v~ in 

wavenumbers by dividing by the speed of light. An energy difference (in Joules) is 

converted to wavenumbers by dividing by hc.  
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   Rotational Absorption Spectrum of H35Cl 

___________________________________________________________________ 

                

                        3

calc
)1(4)1(

~
2~ +−+= JDJJBv  

Transition      )1(
~

2~
calc

+= JJBv   1cm395.10
~ −=B  

J → J + 1    1

obs
cm/~ −v    1

obs
/cm~ −v     1cm34.10

~ −=B   1cm0004.0
~ −=D  

___________________________________________________________________ 

  3 → 4      83.03      82.72     83.06  

       21.07  

  4 → 5    104.10    103.40   103.75 

       20.20 

  5 → 6    124.30    124.08   124.39 

       20.73 

  6 → 7    145.03    144.76   144.98 

        20.48    

  7 → 8    165.51    165.44   165.50  

       20.35 

  8 → 9    185.86    186.12   185.94  

       20.52 

  9 → 10    206.38    206.80   206.30 

        20.12 

10 → 11    226.50    227.48   226.56  

_______________________________________________________________ 

                             rms deviations:             0.55        0.14 

  



Anharmonicity     The potential energy of a chemical bond passes through a minimum 

value at the equilibrium bond length R0. Using a Taylor series expansion, the potential 

energy near the minimum is accurately represented by a Taylor series expansion 

truncated at the term in (R − R0)2. 
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dV/dR is zero in the expression (why?). The second derivative d2V/dR2 at the minimum 

gives the force constant k for Hooke’s Law. 

 

But in general, potential energy curves for chemical bonds are not parabolic 

functions of the bond length. As the vibrational energy increases, the bond weakens. 

Eventually, the molecule shakes itself apart. The decrease in the force constant with 

increasing vibrational energy leads to a decrease in the spacing of the vibrational 

energy levels. 

 

     

 

    

                                                                harmonic potential 

 

 

 

 

                      V(R) 

 

                                                                                 Morse potential 

 

 

 

 

 

 

                                                   internuclear distance R 

 



A more realistic potential energy curve over the whole range of R values is given by 

the Morse function 
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The Morse potential gives zero potential energy at the equilibrium bond length R0. As 

the internuclear distance R approaches infinity, V(R) approaches the bond dissociation 

energy, De. 

 

Solving Schrödinger’s equation using the Morse potential (instead of the harmonic 

potential) gives the vibrational energy levels 
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ve is the fundamental vibration frequency, corrected for anharmonicity, and xe is the 

anharmonicity constant. 

 

 

Fitting the corrected energy equation  
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to measured high resolution rotational-vibrational spectra gives moments of inertia, 

centrifugal distortion constants, accurate fundamental vibration frequencies, bond 

dissociation energies, and anharmonicity constants.  

     



 
 

 Spectroscopic Parameters for Ground-State Diatomic Molecules 

 

___________________________________________________________________  

Molecule   B
~

/cm−1   D
~

/cm−1   
e

v~ /cm−1   
ee

vx ~ /cm−1    R0/pm     De/kJ mol−1 

___________________________________________________________________ 

  H2           60.80    0.0463   4395.2     117.90       74.16        431.8 

 

H35Cl          10.591    0.0005   2989.7       52.05     127.46        428.6  

  

H79Br            8.473    0.0003   2649.7        45.21     141.3        361.8 

 
12C16O            1.931    0.0001   2170.2       13.46     112.81       1071.6  

  
14N16O            1.705    0.0001   1904.0       13.97     115.08         626.1  

 
14N14N            2.010    0.0001   2359.6       14.46     109.4         941.2 

 
16O16O            1.446    0.0001   1580.4       12.07     120.74         490.1  

  
35C35Cl            0.244    0.0001     564.9         4.0     198.8         238.8 

 
7Li7Li            0.673    0.0009     35.14         2.59     267.2           99.4  

 
23Na23Na          0.155    0.0001     159.2         0.76     307.8           70.4 

 
35Cl19O            0.516    0.0001     793.2         9.9         162.81         252.4 

 
23NaH            4.901    0.0001   1172.2       19.72     188.73         202.0  

  

 _______________________________________________________________ 

                              

 

 

 



         Raman Spectroscopy    

 
For a molecule to be microwave or IR active, it must have a permanent dipole moment 

or a dipole moment that changes with the vibrations, respectively. 

 

In addition to permanent dipoles, it is also possible to have induced electric dipole 

moments generated by electromagnetic radiation. If the electric cloud of a molecule is 

not spherically symmetric, for example, an oscillating electric field can produce small 

transient excesses and deficiencies in the electron density on opposite sides of the 

molecule, which appears as a small oscillating dipole moment.  

 

The distortion of the electron density in an oscillating electric field is determined by its 

polarizability. In addition to a permanent dipole moment that a molecule might have, 

an applied electric field induces the transient (time-dependent) dipole moment 
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given by the polarizability tensor  . Tensor element ik gives the dipole moment 

along the i-axis generated by the component of the electric field along the k-axis. 
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Raman spectroscopy deals with rotational and vibrational transitions caused by the 

interactions of radiation and induced dipole moments. Raman transitions, in general, 

are much weaker in intensity than transitions generated by permanent dipoles (why?). 

With high intensity laser radiation sources, however, this is limitation can be 

overcome. 

 

A molecule must have an anisotropic polarizability to be Raman active. In other 

words, its polarizability must not be the same in every direction.  

 

Selection Rules for Raman Rotational Spectra  

 

All linear molecules, including all diatomics (homonuclear or heteronuclear), have 

anisotropic polarizabilities and are therefore Raman active. The electron density in H2 

molecules, for example, is more strongly distorted along the bond axis. This is 

important because Raman spectra can be measured for infrared inactive molecules that 

lack a permanent dipole.  

 

Spherical rotors, such as SF6 and CH4, have isotropic polarizabilities and therefore do 

not have rotational Raman spectra. They do not have permanent dipole moments, and 

are therefore microwave inactive. (Does this mean that spherical rotors are not 

rotating?) 

 

Rotational Raman selection rules: 

 

 Linear Rotors   J = 0,  2 

 

 Symmetric Rotors  J = 0,  1,  2   and    K = 0 

 

 

The J = 0 transitions do not lead to changes in the energy or the frequency of 

scattered photons. They contribute to the unshifted Rayleigh radiation (important for 

light scattering measurements). 

 

The J = 2 transitions can be understood in terms of conservation of momentum by 

noting that two spin-1 photons are involved (the incoming photon and the scattered 

photon), so the maximum change in the angular momentum quantum number is 2. 



Raman Rotational Spectra for Linear Rotors 

 

The selection rules J = 0,  2 can be used to predict the form of Raman spectra for 

linear rotors, such as diatomic molecules. 

 

Rayleigh Line     For incident radiation with frequency vI, the Rayleigh line for 

radiation scattered with no change in energy appears at frequency vI. (J = 0) 

 

Stokes Lines     When a molecule makes a transition with J = +2, the scattered 

radiation leaves the molecule with higher  rotational energy, so there is a decrease in 

the frequency and the energy of the scattered radiation. The transitions with J = +2 

are called the Stokes lines. 

 

For incident radiation at frequency v0, the rotational energy equation EJ = BJ(J + 1) can 

be used to predict transitions at the frequencies vI − (6B/h), vI − (10B/h), vI − (14B/h), vI 

− (18B/h), … with spacing 4B/h.  

 

J  →  J + 2  (Stokes lines (molecules pick up energy)): 
 

 0 →  2  E = B(2)(2+1) − B(0)(0+1) = 6B 

 

 1 →  3  E = B(3)(3+1) − B(1)(1+1) = 10B 

 

 2 →  4  E = B(4)(4+1) − B(2)(2+1) = 14B 

 

 3 →  5  E = B(5)(5+1) − B(3)(3+1) = 18B 

 

    etc. 

 

 

Anti-Stokes Lines     When a molecule makes a transition with J = −2, the scattered 

radiation leaves the molecule with lower rotational energy, so there is a increase in the 

frequency and the energy of the scattered radiation. Transitions with J = −2 are called 

the anti-Stokes lines.  

 

 



For incident radiation at frequency vI, the energy equation EJ = BJ(J + 1) can be used 

to predict transitions at the frequencies vI + (4B/h), vI + (10/h), vI + (14B/h), vI + 

(18B/h), … with spacing 4B/h once again.  

 

 

J  →  J − 2  (Anti-Stokes lines (molecules lose energy)): 
 

 2  →  0  E = B(0)(0+1) − B(2)(2+1) = −6B 

 

 3  →  1  E = B(1)(1+1) − B(3)(3+1) = −10B 

 

 4  →  2  E = B(2)(2+1) − B(4)(4+1) = −14B 

 

 5  →  3  E = B(3)(3+1) − B(5)(5+1) = −18B 

 

    etc. 

 

     Rayleigh Line 

       (unshifted) 

              

Pure Raman Rotational 

Spectrum for CO2 

 

 

                          higher frequencies       lower frequencies 

 

 

 

 

 

 

 

 

 

 

 



 

Raman Vibrational  Spectra for Diatomics 

 

The main selection rule for vibrational Raman transitions is that the polarizability of 

the molecule must change during vibration. The vibration of homonuclear and 

heteronuclear molecules causes the electron clouds to expand and contract, and so the 

polarizability changes. Both kinds of diatomics are therefore vibrationally Raman 

active. (In contrast, only heteronuclear diatomics are vibrationally infrared active.) 

 

The selection rule for vibrational Raman transitions is n = ±1. The anti-Stokes lines 

are shifted to higher frequencies because the scattered photon picks up energy from an 

excited vibrational state and leaves the molecule in a lower-energy state (n = −1). 

 

The spacing of vibrational energy levels is large compared to thermal energies at room 

temperature. Consequently, most molecules are in their ground vibrational states under 

ambient conditions, and vibrational anti-Stokes lines are relatively weak. 

 

The lower-frequency Stokes lines corresponding to n = +1 (the scattered radiation 

leaves the molecules in a higher vibrational state) are more intense. 

 

In gas-phase Raman spectroscopy, simultaneous vibrational and rotational transitions 

produce a band structure with multiple lines. 

 

In the terminology used by spectroscopists, the O branch, Q branch, and S branch 

correspond to Stokes lines (n = +1) with the following branches: 

 

 

O branch  J = −2 

 

 

Q branch  J =   0 

 

 

S branch  J = +2 

 

 

 



n  →  n + 1, J  →  J + 2  (S Branch): 
 

 0 →  2  E = hv0 + B(2)(2+1) − B(0)(0+1) = hv0 + 6B 

 

 1 →  3  E = hv0  + B(3)(3+1) − B(1)(1+1) = hv0 + 10B 

 

 2 →  4  E = hv0  + B(4)(4+1) − B(2)(2+1) = hv0 + 14B 

 

 3 →  5  E = hv0 + B(5)(5+1) − B(3)(3+1) = hv0 + 18B 

 

    etc. 

 

 

 

n  →  n + 1, J  →  J  (Q Branch): 
 

 J →  J  E = hv0  

 

 

 

n  →  n + 1, J  →  J − 2  (O Branch): 
 

 2 →  0  E = hv0 + B(0)(0+1) − B(2)(2+1) = hv0 − 6B 

 

 3 →  1  E = hv0  + B(1)(1+1) − B(3)(3+1) = hv0 − 10B 

 

 4 →  2  E = hv0  + B(2)(2+1) − B(4)(4+1) = hv0 − 14B 

 

 5 →  3  E = hv0 + B(3)(3+1) − B(5)(5+1) = hv0 − 18B 

 

    etc. 

 

The information available from Raman spectroscopy adds to that from infrared 

spectroscopy because homonuclear diatomics can be studied, providing force 

constants, bond lengths, fundamental frequencies, and other information. 



 

 

 

 

 Vibrational-Rotational Raman Spectrum for a Diatomic Molecule 
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                  n = +1 (Stokes)      

 

 

         n = −1 (anti-Stokes)  
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