


**Progress Report** 

By: MELRR Engineering Group #3

## Weekly Updates



## **Case Dimensions**

- Length 15cm
- Width 6cm
- Height 5.8 cm (1.8cm larger than the height of an average glasses case to provide room for the fluid compartment and mechanics)

#### **Volume Calculations**

- Volume formula for a rectangular prism (L x W x H)
- Outer Volume: 15cm x 6cm x 5.8cm = 522cm^3
- Inner Volume: (15-0.10)cm x (6-0.10)cm x (5.8-0.10)cm = 501.087cm^3
- Total volume of material needed: (522-501.087) = 20.913cm^3

# Weight Calculations

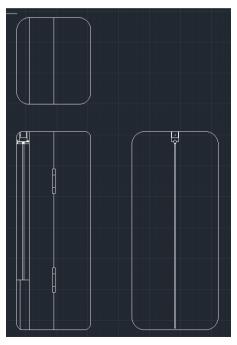
- Weight of solution (max filled)
  - 75% rubbing alcohol
    - (0.75)(94.5mL)(1cm^3/1mL)(0.78509g/cm^3) = 55.643g
  - o 25% water
    - (0.25)(94.5mL)(1cm^3/1mL)(1g/cm^3) = 23.625 g
  - $\circ ~~ 2\,drops\,soap$ 
    - (0.1mL)(1cm^3/1mL)(0.801g/cm^3) = 0.0801g
- Total weight of solution = 79.3481 g

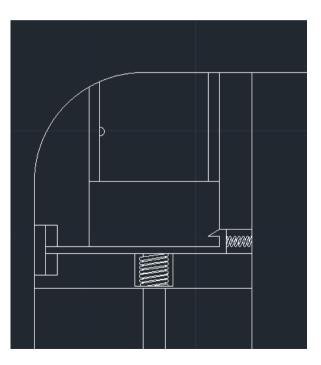
## Fluid Compartment

- The compartment that will hold the cleaning solution will be a 8.80 x 6 x 1.8 cm plastic casing capable of holding 95 mL.
- Plastic will keep the cleaning solution from leaking into the glasses compartment of the case.
- We expect that the 95mL of solution will last the user over a month and a half.

#### Calculations

We estimated that a


person would on average clean their glasses 5 times per day, at an average of 6 sprays per clean, where the average spray nozzle of our caliber dispenses 1mL per 12-15 sprays.


- 5 cleans per day x 6 sprays per clean = 30 sprays per day
- 1 mL x 2 = 2 mL per day
- 94.5 mL/2 mL per day = 47.25 days

# **Final Design**

- Designed to carry 95mL of liquid (maximum)
  - Able to take with you on airplane
- Contains:
  - $\circ$   $\quad$  Two metal hinges to allow the case to open and close properly
  - Compartment to hold cleaning solution
  - Compartment to hold mircofibre cloth
  - Push-pin nozzle
  - Various other mechanical components







# Materials for the Casing

- We are looking into 3D printing our design, in order to produce a working prototype
- Materials needed to construct the exterior of the case:
- Carbon fibre as the exterior material to minimize the mass and keep the case strong and sleek.
- A protective layer of foam material to sit between the exterior and interior of the case to absorb the force if the case is dropped.
- Thick microfiber velvet material to line the inside of the case. This material is similar to that used in other cases and will act to protect the lenses from scratches.

## **Carbon Fiber Option**

- Density of carbon fiber: 2.00g/cm^3
- Total weight of material needed: 2.00g/cm^3 x 20.913cm^3 = 41.826g
- Cost of carbon fiber is about \$182/kg Canadian
- (\$182)(0.041826kg) = \$7.61



## **Cost of Materials**

- Carbon Fiber \$182/Kg
  - **\$7.61 per unit**
- Spray nozzle \$25/50 nozzle
  - $\circ$  \$0.50 per unit
- Microfibre Velvet lining \$3.80/m
  - $\circ$  \$0.08 per unit
- Metal Hinges \$0.20/hinge
  - **\$0.40** per unit
- Foam \$34/bundle (1 bundle = 0.15m x 380m)
  - $\circ$  \$0.04 per unit
- TOTAL COST PER UNIT: \$8.63

# **Total Weight**

- Weight of solution (max filled) + weight of case
  - $\circ$  41.826g + 79.3481g = 121.1741g

# **Projected Timeline**

| March 3rd - 10th                                                              | March 10th - 17th                                               | March 17th - 24th                                                                                              | March 24th - 31st                                                                   |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Establish how we<br>will build prototype                                      | Build the prototype                                             | Evaluations                                                                                                    | Final Report                                                                        |
| - Meet with Paul<br>- Prepare for 3D printing<br>- Gather necessary materials | - Complete 3D printing of<br>each part<br>- Assemble the pieces | <ul> <li>Perform total cost<br/>evaluation</li> <li>Complete performance<br/>evaluation of the case</li> </ul> | <ul> <li>Finish final report</li> <li>Prepare for final<br/>presentation</li> </ul> |