Lecture 48. Electronic structure of atoms, Chapter 6.
Quiz\#2 Feb. 16 (W)

Student's tutorial from 7-9pm Mondays and Tuesdays in NH246

Dr. Orlova
PS-3026
Ph: 867-5237
gorlova@stfx.ca

Helping hrs at PS-3026: Monday 3-5 pm; Wd 3-5 pm

Quantized Energy and Photons

Three phenomena which caused development of quantum theory: black body radiation, photo-electronic effect, and emission spectra

Matter can emit or absorb energy only in $\mathbf{N} \times h \nu$, where \mathbf{N} is whole number

Black-body radiation: read-hot objects are cooler than whitehot
-Planck: energy can only be absorbed or released from atoms in certain amounts called quanta.

The relationship between energy and frequency is

$$
E=h v
$$

where h is Planck's constant ($6.626 \times 10^{-34} \mathrm{Jxs}$).

The Photoelectric Effect and Photons (Einstein's Noble prize)

- light hits the surface of a light metal (Cs): electrons are ejected but only at certain frequencies.
- A photon transfers its energy to an electron. At sufficient amount of energy, an electron can escape the metal surface.

$$
\text { Light travels in packets: photons } N \text { W }
$$

Line Spectra of Atoms (radiation of only specific wavelengths)

Na
—n=3

Hg
MERCURY

ІтнIUM

$$
\mathrm{E}_{2}-\mathrm{E}_{1}=\mathrm{hv}
$$

HMDROGEN

Wavelength
Light hits an atom: atom absorbs certain frequencies (excited state)
atom in excited state emits light at certain frequencies

It is in contrast to continuous spectrum: rainbow

Bohr Model

- The first orbit in the Bohr model has $n=1$, is closest to the nucleus, and has negative energy by convention.
- The furthest orbit in the Bohr model has \boldsymbol{n} close to infinity and corresponds to zero energy.
- Electrons in the Bohr model can only move between orbits by absorbing and emitting energy in quanta (hv).
- The amount of energy absorbed or emitted on movement between states is given by

$$
\Delta E=E_{f}-E_{i}=h \nu
$$

Duel nature of electron: wave + particle

Small particles of matter exhibit wave-like properties

$$
\begin{aligned}
& E=m c^{2} \\
& E=h v
\end{aligned}
$$

$c=v \lambda$

$$
\begin{array}{ll}
m c^{2}=h v & \\
\frac{h v}{c}=m c=p & \frac{h v}{v \lambda}=p \\
& \frac{h}{\lambda}=p
\end{array}
$$

$$
\lambda=\frac{h}{p}=\frac{h}{m u}
$$

What is the de Broglie wavelength (m) of a 60.0 kg athlete running at a speed of $10 \mathrm{~m} / \mathrm{s}$?

$$
\lambda=\frac{h}{p}=\frac{h}{m u}
$$

$$
\begin{gathered}
\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
\mathrm{~J}=\mathrm{kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}
\end{gathered}
$$

$$
\begin{gathered}
\lambda=\frac{h}{m u}=\frac{6.626 \times 10^{-34} \frac{\mathrm{~kg} \times \mathrm{m}^{2}}{\mathrm{~s}^{2}} \times s}{60 \mathrm{~kg} \times 10 \frac{\mathrm{~m}}{\mathrm{~s}}}=0.01104 \times 10^{-34} \mathrm{~m} \\
=1.104 \times 10^{-36} \mathrm{~m}
\end{gathered}
$$

Electron acts as a particle:

Electron acts as a wave:

Photo plate

Photo plate

Heisenberg uncertainty principle

The process of measurement of \bar{e} position changes the energy of the $\overline{\mathrm{e}}$

We cannot know exact position and exact momentum of an electron at the same time

$$
\Delta x \times \Delta p \approx h
$$

In quantum mechanics, a particle does not have well-defined position and velocity

Heisenberg uncertainty principle

A particle (electron) CAN BE represent by WAVE FUNCTION (Ψ)
Ψ is a number at each point of space that will give the probability of finding the particle at this position.

Schrődinger equation: gives a rate at which Ψ is changing with time

$$
\begin{array}{cl}
\text { ih } \frac{\partial}{\partial t} \Psi(\vec{x}, t)=\hat{H} \Psi(\vec{x}, t) & \begin{array}{l}
\text { His energy operator, } \mathrm{x} \\
\text { is space coordinate, } \mathrm{t} \text { is } \\
\text { time }
\end{array} \\
\text { If time is constant } & \begin{array}{l}
\text { T is kinetic energy, } \mathrm{V} \text { is } \\
\hat{H} \Psi(\vec{x})=E \Psi(\vec{x})
\end{array} \\
\hat{H}=\hat{T}+\hat{V} & \begin{array}{l}
\text { potential energy }
\end{array}
\end{array}
$$

Solution of Sch. Eq. gives the energy of the system and Ψ

Physical meaning of Ψ, postulated by Born

Ψ^{2} gives a probability of finding electron in elementary volume of space

Quantum mechanics is a theory of probabilities, the values, predicted with Q.M. are average values

Solving Schr. Eq:
Solution gives Ψ for each electron in atom which we called orbitals
Each orbital has energy
Each orbital has properties described by quantum numbers
Ψ and Ψ^{2} have approximately the same shape- shape of an orbital

Quantum numbers

Principle q. n. $n=1,2,3, \ldots \ldots$.

Orbital angular momentum $\quad \ell=0,1,2,3$,

Magnetic quantum number $\quad m_{1}=-\ell, \quad-\ell+1, \ldots .0 \ldots .+\quad+\ell$

Electronic shells

All orbitals with the same n - principle electronic shell

All orbitals with the same n and ℓ - subshell

$\boldsymbol{\ell}=\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
s-subsh	p-subsh	d-subsh	f-subsh	g-subsh	h-subsh

Ψ^{2} - gives the probability of finding electron at the certain point in space, i.e.
the probability density
$\Psi^{2} \times$ Volume $=$ probability of finding electron in that volume - all the space around atom

Orbital (solution of Schr. Eq.) - is the probability of finding electron in the space around the nucleus

Maximum probability to find electron at

Section of 2 s :

Ψ has the same shape as Ψ^{2} but it has a sign (opposite phase)

ℓ gives shapes of orbitals
$m_{1}=$ gives the orientation of atomic orbitals in Cartesian coordinates

(a)

(b)

Figure 6.24 in the text

Magnetic spin number: m_{s}

$$
m_{s}=+1 / 2 ;-1 / 2
$$

Spin UP and spin DOWN

Building the electronic configurations for atoms
Pauli Exclusion Principle:
Two electrons in an atom cannot have the same set of quantum numbers ($\mathrm{n}, \mathrm{I}, \mathrm{m}_{\mathrm{l}}$, and m_{s}). Two electrons on the same orbital (n, l, m are the same) must have opposite spins.

$$
\begin{array}{r}
\boxed{\uparrow \downarrow} \\
\mathrm{n}=1, \mathrm{l}=0, \mathrm{~m}_{\mathrm{l}}=0, \mathrm{~m}_{\mathrm{s}}=1 / 2 \\
\mathrm{n}=1, \mathrm{l}=0, \mathrm{~m}_{\mathrm{l}}=0, \mathrm{~m}_{\mathrm{s}}=-1 / 2
\end{array}
$$

