
Gradient geometry optimization leads us to a stationary point on PES
gradE=0

It might be minimum, saddle point, inflection point, or maximum

How to find what the stationary point is (the nature of a stationary point)?

Like in calculus: get second derivatives of E on nuclear coordinates
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All second derivatives are positive- minimum on PES

All second derivatives are positive but one equals to 
zero-inflection point on PES

All second derivatives are positive but one is negative-
saddle point on PES- TRANSITION STATE!



ν=1/2π (k/μ)1/2

F=-kx, k is a spring force constant
m1 m2

Classic harmonic oscillator

x1 x2

Center of mass

If we know second derivatives of E on qi (the force constants) we can 
calculate some physical properties.  The most important are harmonic 
vibrational frequencies- gives us ideal IR spectrum

Use similar model for quantum harmonic oscillator



E

qi

Morse curveparabola

ν=1/2π (k/μ)1/2

So, if we have one negative force, k,
The square root will give as (-1)1/2=I, the 
imaginary unit. We’ll get one imaginary 
frequency in the IR spectrum in G03 
denoted as “-”

Use Born-Oppenheimer approximation: allow nuclei to vibrate with frozen 
wave function!



Wave function. Molecular Orbitals as Linear Combination of Atomic 
Orbitals (MO LCAO)

Do we know exact AO for atoms? 

Exact AO- tables of numbers

Approximate AO with a function

Approximate wave function with linear combination of exponential functions

Slater function

φAO = N(rn*-1e-ζ1r +rn*-1e –ζ2r)

AO as a linear combination  of two Slater functions with 2 zeta variables
Double-zeta basis set



Black –true wave function
Blue- one Slater function
Red- Double-zeta

Two Slater functions provide good accuracy but integrals with e- r are too 
complicated

Gauss functions (bell functions)

φAO = Nn(α)rn-1 exp(-αr2)

We shall need many Gauss functions to 
approximate wave function but integrals 
are easy to calculate, so overall it is faster



Basis Sets in G03

Minimal  basis set:      STO-3G (Slater type orbital approximated with 3 G-functions

Pople’s basis sets

Split-valence basis sets

3-21G, 6-31G, 6-311G

All-electron basis sets

We can add additional sets of G-functions: polarization (d,p,f) and diffuse 
(denoted as +)

6-31+G(d)       6-311++G(2df, p)

Effective core potential (ECP) basis sets. Core electrons are described 
with potential. Valence electrons- as above



Relativistic core potential and associated basis sets 

For heavy atoms (starting from 4th period)

LanL2DZ  (LanL-relativistic effective core potential, DZ-basis set for valence 
electrons) and SDD (Stuttgart –Dresden ECP and D-basis set) 

Both model core electrons by a function
Treat valence electrons explicitly

Core can be taken from Dirac equation- relativistic calculations.
Simulate relativistic effects

Relativistic effects (mass and velocity are related)

Special theory of relativity: 
space-time symmetry

For H-like atom velocity of 1s electron is

v=Zc/137 Z is a nuclear charge

For heavy atoms, velocity of 1s e approaching speed of light- relativistic 
corrections are significant



+Z
Inner s and p-sub-
shells shrink and 
screen better the 
valence electrons

d- and f-subshells expand

With relativistic 
effects, atoms are 
more chemically 
active

So, LanL2DZ and SDD describe these sub-shell effects 

Another result of relativistic effects- spin-orbit coupling. Big challenge!



In general, for any mani-electron atom, inner subshells are less chemically 
important than valence electrons form out shells

Go to contracted basis sets, contracted Gauss type orbital, CGTO

CGTO= Σci PGTO Primitive Gauss-type orbitals

Examples:

STO-3G

C 1s 2s 2px 2py 2pz
H 1s

5CGTO, 15PGTO

1CGTO, 3PGTO



3-21G

C 1s 2s  2s’ 2px  2px’ 2py 2py’ 2pz 2pz’
PGTO 3 2    1 2       1 2      1 2       1

Overall, 15 PGTO and 9 CGTO

H 1s   1s’
PGTO 3      1

2CGTO, 4 PGTO



6-31G(d) = 6-31G*

C 1s   2s  2s’ 2px2px’ 2py2p2’ 2pz 2pz’ dx2 dyz dz2 dxy dyz dzx
6     3    1    3    1       3    1     3    1   1    1    1     1      1    1

15 CGTO, 6+16+6=28 PGTO 

H 1s  1s’
3     1

2CGTO, 4 PGTO

Computational time is proportional to N4 where N is number of basis functions 

C6H6

STO-3G 36 108
3-21G 66 108
6-31G(d) 102 192

CGTO PGTO



Basis idea of diffuse and polarization functions

+

S (contracted) S (diffuse)

λ

Diffuse functions are important whenever loosely bound electrons are present:
Anions, excited states. Also for cations- to describe long-range interactions

Polarization functions

A basis set that incorporates functions of higher angular quantum number (d for 
carbon, p for H) is called a polarization basis set. 
It provides for displacement of electron density away from the nuclear center



p polarized by d

How to describe polar H-F bond?

s + λp  sp hybrid
s and p polarized

So, add polarization function to H (p for s-orbital)

s  polarized by p 

+    λ

Now can describe nicely small bond angles 

f-polarization functions allow to describe any volume of space around atom-
expensive


