AROMATICITY – THE FIRST CHECK

Consider only π -electrons of conjugated cyclic systems like benzene

Hückel rule: cyclic systems with $(4n+2) \pi$ -electrons, n=0,1,2..., are stable (aromatic)

cyclic systems with (4n) π -electrons, n=0,1,2..., are unstable (antiaromatic)

Consider π - MO of benzene (6 π electrons)

 D_{6h} symmetry implies double degeneracy of MO (there is no preference for x or y direction assuming that z is perpendicular to the molecular plane)

 π -electrons occupy only bonding orbitals

SHMO (Simple Hückel MO calculator) //www.chem.ucalgary.ca/SHMO

Systems with 2 and 6 electrons in the π -system have closed-shell electronic state (closed-shell singlet)

Systems with 4 and 8 electrons in the π -system have unpaired electrons, each on different MO, with open-shell electronic state (usually triplet)

NEXT OBSERVATION

2 and 6 π -electron cyclic systems have E $_{\pi}$ energy lower than reference (localized or open) systems with the same number of π -electrons

This is also true for
2 6 10 1418.... (4n+2)4 8 12 1620... (4n) – cyclic systems are not stable

Hückel rule: $(4n+2) \pi$ -electron systems are especially stable compared to acyclic analogues. They are AROMATIC systems.

(4n) π -electron cyclic systems are unstable compared to acyclic analogues. They are ANTIAROMATIC systems.

For larger annulenes, n>20, (annulenes are the cyclic compounds composed from alternating single and double bonds), the difference between cyclic and acyclic forms disappears.

Should have a high barrier to rotation about a double bond and a small dipole moment

In fact, the barrier is ca. 20 kcal/mol; μ = 6.3 D

Nonplanar, reactive, oxidized readily

High acidity of cyclopentadiene: Anion is stable