Cyclization of polyenes

n=0- cyclization of cis-butadiene

Reaction is endothermic- difficult to run in the gas phase

Let us consider reverse reaction- ring opening, which is exothermic and easier for experiment

There are two different pathways for ring opening: disrotatory and conrotatory

hv -reaction

Disrotatory- allowed

Conrotatory-forbidden

n=1, hexatriene cyclization

 Δ , disrotatory allowed

Selection rules for electrocyclic reactions

n	Number of π -electrons	Δ	hv	
0,2,4	4q	con	dis	
1,3,5	4q+2	dis	con	

Sigmatropic reactions. Selection rules

Sigmatropic reactions ([i,j]-shift): migration of a σ -bond flanked by one or more π -systems to location i over j positions.

H- and alkyl-group migrations, Cope rearrangement, etc.

3,3-sigmatropic shift

[1,5]-H-shift

[1,3] H• shift in allyl radical

 Δ , supra- forbidden

 Δ , antara- allowed

hv, supra- allowed

hv, antara- forbidden

[1,5] H-shift

Flip the selection rule when : change in number of pi-electrons (4n, 4n+2); change in sterochemistry (supra, antara), change in electronic state (ground or excited)

Migration of CH₃- inversion or retaining of configuration

C 1,2-shift, supra- allowed, retaining of configuration

1,3-shift, supra, with retaining of configuration- forbidden

Allowed H-shifts

Number of e		polyene		Δ	hv
	neutral	cation	anion-		
2	-	[1,2]	-	S	а
4	[1,3]	[1,4]	[1,2]	а	S
6	[1,5]	[1,6]	[1,4]	S	а
4q	[1, 4q-1]	[1,4q]	[1,4q-2]	а	S
4q+2	[1,4q+1]	[1,4q+2]	[1,4q]	S	а

Another useful approach: aromaticity of transition states (Evans, Zimmerman)

For allowed rxn, TS is aromatic, for forbidden rxn, TS is antiaromatic

cyclic dimerization of ethylene:

Hückel and Möbius aromaticity (topology)

Under Hückel topology, there are even number of nodes (0, 2,4) Under Möbius topology- odd number of nodes (1,3,5...)

Published in: Min-Chul Yoon; Pyosang Kim; Hyejin Yoo; Soji Shimizu; Taro Koide; Sumito Tokuji; Shohei Saito; Atsuhiro Osuka; Dongho Kim; *J. Phys. Chem. B* Article ASAP DOI: 10.1021/jp207731k Copyright © 2011 American Chemical Society

For Mobius topology, the rules are reversed and so are orientation of rings in the circles

Allowed π_s^2 + π_a^2 addition (Möbius 4 π aromatic)

Möbius 4π -aromatic TS!

Absolutely generalized Woodward-Hoffman rule (you do not have to know anything but a script of rxn)

A pericyclic rxn is allowed if the number of 4n+2 suprafacial plus 4m antarafacial component is odd

For example:	
$\pi^{2}(s) + \pi^{2}(s)$	First term: supra, n=0, second term: supra, n=0 Zero + zero= 2 components (even)- forbidden
π² (s) + π² (a)	First term: supra, n=0, second term: antara, does not fit the 4m formula, discard Result: one zero = 1 component, odd, allowed
π ⁴ (s) + π ² (s)	First term: supra, n=4, does not fit 4n+2, discard second term: supra, n=0 One zero= 1 component (odd)- allowed