CHEM421

FROM MOLECULAR STRUCTURE TO FUNCTION

Electronic structure bonding

Thermodynamics, kinetics, reagents, pre-reaction complex, transition state structure, intermediate, post-reaction complex, products

Knowing the structure and reaction mechanism- make the substance

Solving Schrödinger equation gives quantum numbers, describing electrons

$$
-i \hbar \frac{\partial \Psi}{\partial t}=\hat{H} \Psi
$$

n- principle number (energy), l- orbital angular momentum (shape of the electron cloud, $\mathrm{s}, \mathrm{p}, \mathrm{d}, \mathrm{f}$,), m_{1} - magnetic quantum number (maximum possible number of similar shapes of the same energy: 1 for $\mathrm{s},, 3$ for $\mathrm{p}, 5$ for $\mathrm{d}, 7$ for f)
s - spin magnetic momentum must be introduced for nonrelativistic Schrödinger equation

ELECTRONIC STRUCTURES OF ATOMS

-no two electrons can fill one orbital with the same spin (Pauli)
-for degenerate orbitals (same energy), electrons fill each orbital singly before any orbital gets a second electron. Total spin should be maximum possible. (Hund's rule).

Sample
Which set of n, I, and m_{l} is incorrect

1. $2,1,0$
2. $3,2,-2$
3. $2,2,1$
4. $2,0,-1$
5. $3,2,3$

-Core electrons: electrons in [Noble Gas].

- Valence electrons: electrons outside of [Noble Gas].

Excited states: C ${ }^{\boldsymbol{*}} \mathbf{1 s}^{\mathbf{2}} \mathbf{2 s}^{\mathbf{1}} \mathbf{2 p} \mathbf{p}^{\mathbf{3}}$
-The period number is the value of n.
-Groups 1A and 2A have the s-orbital filled.

The lanthanides and actinides have the f-orbital filled.

Representative s-block
elements
Transition metals
\square Representative p-block elements
$\square f$-Block metals

	$\begin{gathered} \text { 1A } \\ 1 \end{gathered}$																	$\begin{gathered} 8 \mathrm{~A} \\ 18 \end{gathered}$
Core	1 \mathbf{H} $1 s^{1}$	2 A 2											$\begin{aligned} & 3 \mathrm{~A} \\ & 13 \end{aligned}$	$\begin{aligned} & 4 \mathrm{~A} \\ & 14 \end{aligned}$	$\begin{aligned} & 5 \mathrm{~A} \\ & 15 \end{aligned}$	$\begin{aligned} & 6 \mathrm{~A} \\ & 16 \end{aligned}$	$\begin{aligned} & \text { 7A } \\ & 17 \end{aligned}$	$\underset{~}{\text { He }}$
[He]	3 Li $2 s^{1}$	$\begin{gathered} 4 \\ \text { Be } \\ 2 s^{2} \end{gathered}$												${\underset{2 s^{2} 2 p^{2}}{\mathbf{C}}}_{\mathbf{C}^{2}}^{\text {(}}$	$\begin{gathered} 7 \\ \mathbf{N} \\ 2 s^{2} 2 p^{3} \end{gathered}$	$\underset{2 s^{2} 2 p^{4}}{\stackrel{8}{\mathbf{0}}}$	$\underset{\mid c}{\mathbf{F}} \underset{2 s^{2} 2 p^{5}}{ }$	$\begin{array}{\|c} 10 \\ \mathbf{N e} \\ 2 s^{2} 2 p^{6} \end{array}$
[Ne]	$\begin{gathered} 11 \\ \mathbf{N a} \\ \mathbf{3 s} \mathbf{s}^{1} \end{gathered}$	$\underset{\substack{12 \\ \mathbf{M g} \\ \hline}}{ }$	$\begin{gathered} \text { 3B } \\ 3 \end{gathered}$	$\begin{gathered} \text { 4B } \\ 4 \end{gathered}$	$\begin{gathered} \text { 5B } \\ 5 \end{gathered}$	$\begin{gathered} \text { 6B } \\ 6 \end{gathered}$	$\begin{gathered} 7 B \\ 7 \\ \hline \end{gathered}$	8	$8 B$ 9	10	$\begin{aligned} & \text { 1B } \\ & 11 \end{aligned}$	$\begin{aligned} & 2 B \\ & 12 \\ & \hline \end{aligned}$	$\begin{gathered} 13 \\ \mathbf{A 1} \\ 3 s^{2} 3 p^{1} \end{gathered}$	$\left\lvert\, \begin{gathered} 14 \\ \mathbf{S i} \\ 3 s^{2} 3 p^{2} \end{gathered}\right.$	$\begin{gathered} 15 \\ \mathbf{P} \\ 3 s^{2} 3 p^{3} \end{gathered}$	$\underset{3 s^{2} 3 p^{4}}{16}$	$\underset{3 s^{2} 3 p^{5}}{17}$	$\begin{array}{\|c} 18 \\ \mathbf{A r} \\ 3 s^{2} 3 p^{6} \end{array}$
[Ar]	19 \mathbf{K} $4 s^{1}$	$\begin{aligned} & 20 \\ & \mathbf{C a}_{4 s^{2}} \end{aligned}$	$\begin{array}{\|c\|} \hline 21 \\ \mathbf{S c} \\ 3 d^{1} 4 s^{2} \end{array}$	$\begin{gathered} 22 \\ \mathbf{T i} \\ 3 d^{2} 4 s^{2} \end{gathered}$	$\underset{3 d^{3} 4 s^{2}}{\mathbf{2 3}}$	$\begin{gathered} 24 \\ \mathbf{C r} \\ \mathbf{C} d^{5} 4 s^{1} \end{gathered}$	$\begin{gathered} 25 \\ \begin{array}{c} \mathbf{M n} \\ 3 d^{5} 4 s^{2} \end{array} \end{gathered}$	$\begin{gathered} 26 \\ \mathbf{F e} \\ 3 d^{6} 4 s^{2} \end{gathered}$	$\underset{3 d^{7} 4 s^{2}}{\stackrel{27}{\mathbf{C o}}}$	$\underset{\substack{28 \\ \mathbf{N i}^{8} 4 s^{2} \\ \hline \\ \hline}}{ }$	$\underset{3 d^{10} 4 s^{1}}{\mathbf{C u}}$	$\begin{gathered} 30 \\ \mathbf{Z n} \\ 3 d^{10} 4 s^{2} \end{gathered}$			33 $\mathbf{A s}$ $3 d^{10} 4^{2} s^{2}$ $4 p^{3}$	34 Se $3 d^{10} 04^{2}$ $4 p^{4}$	$\begin{gathered} 35 \\ \mathbf{B r} \\ 3 d^{10} 4^{2}{ }^{5} \\ 4 p^{5} \\ \hline \end{gathered}$	36 $\mathbf{K r}$ $3 d^{10} 4^{2}$ $4 p^{6}$ 54
[Kr]	$\begin{aligned} & 37 \\ & \mathbf{R b} \\ & \mathbf{R y}^{1} \end{aligned}$	$\begin{aligned} & 38 \\ & \mathbf{3 8} \\ & 5 s^{2} \end{aligned}$	$\begin{array}{\|c} \mathbf{3 9} \\ \mathbf{4 d} 15 s^{2} \end{array}$	$\begin{gathered} 40 \\ \mathbf{Z r} \\ 4 d^{2} 5 s^{2} \end{gathered}$	$\begin{gathered} 41 \\ \mathbf{N}, \\ \mathbf{N} d^{3} 5 s^{2} \end{gathered}$	$\underset{\substack{\text { Mo } \\ \hline d^{5} s^{1}}}{ }$	$\begin{gathered} 43 \\ \mathbf{T c} \\ 4 d^{5} 5 s^{2} \end{gathered}$	$\underset{\substack{4 d^{7} 5^{1} \\ \mathbf{4 n} \\ \hline}}{ }$	$\begin{gathered} \mathbf{4 n}_{4 d^{8} 5 s^{1}} \\ \hline \end{gathered}$	$\begin{aligned} & 46 \\ & \text { Pd } \\ & \mathbf{4 d d ^ { 1 0 }} \end{aligned}$	$\underset{\substack{10 \\ \hline d^{10} 5 s^{1}}}{47}$		$\begin{gathered} 49 \\ \text { In } \\ 4 d^{10} 5 s^{2} \\ 5 p^{1} \\ \hline \end{gathered}$	50 Sn $4 d^{10} 55^{2}$ $5 p^{2}$	51 $\mathbf{S b}$ $4 d^{10} 5^{s}$ $5 p^{3}$	$\begin{gathered} 52 \\ \mathbf{T e} \\ 4 d^{10} 5_{5^{2}} \\ 5 p^{4} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 53 \\ \mathbf{I} \\ 4 d^{10} 5 s^{2} \\ 5 p^{5} \\ \hline \end{array}$	54 $\mathbf{X e}$ $4 d^{10} 5_{5}^{2}$ $5 p^{6}$ 86
[Xe]	$\begin{aligned} & 55 \\ & \text { Cs } \\ & 6 s^{1} \end{aligned}$	$\begin{aligned} & 56 \\ & \text { Ba } \\ & 6 s^{2} \end{aligned}$		$\begin{gathered} 72 \\ \mathbf{H f f}_{4 f^{14} 5 d^{2}}^{6 s^{2}} \end{gathered}$	$\begin{gathered} 73 \\ \mathbf{T a} \\ 4 f^{145} 5 d^{3} \\ 6 s^{2} \end{gathered}$	$\underset{\substack{\mathbf{7 4 1 4} 5 d^{4} \\ 6 s^{2}}}{\mathbf{W}}$	$\begin{array}{c\|} \hline 75 \\ \mathbf{R e} \\ 4 f^{14} 5 d^{5} \\ 6 s^{2} \end{array}$	$\begin{gathered} 76 \\ \begin{array}{c} \text { Os } \\ 4 f^{145} d^{6} \\ 6 s^{2} \end{array} \end{gathered}$	$\begin{gathered} 77 \\ \mathbf{4 r} \\ 4_{1}^{145} 5 d^{7} \\ 6 s^{2} \end{gathered}$	$\begin{gathered} 78 \\ \hline \mathbf{P t} \\ 4 f^{14} 5 d^{9} \\ 6 s^{1} \end{gathered}$	$\begin{gathered} 79 \\ \begin{array}{c} \mathbf{A u} \\ 4 f^{14} 5 d^{10} \\ 6 s^{1} \end{array} \end{gathered}$	$\begin{gathered} 80 \\ \mathbf{H g}_{4 f^{14} 5 d^{10}} \\ 6 s^{2} \end{gathered}$	$\begin{gathered} 81 \\ \mathrm{Tl}^{145} 5{ }^{10} \\ 6 s^{2} 6 p^{10} \end{gathered}$	82 $\mathbf{P b}$ $4 f^{145}{ }^{10}$ $6 s^{2} 6 p^{2}$ 1	83 $\mathbf{B i}$ $4 f^{14} 5 d^{1}$ $6 s^{2} 6 p^{3}$	84 Po $4 f^{14} 5 d^{10}$ $6 s^{2} 6 p^{4}$	$\begin{gathered} 85 \\ \mathbf{A t}^{4 f^{14} 5 d^{10}} \\ 6 s^{2} 6 p^{5} \end{gathered}$	86 $\mathbf{R n}$ $4 f^{14} 5 d^{1}$ $6 s^{2} 6 p^{6}$
[Rn]	$\begin{aligned} & 87 \\ & \mathbf{F r}_{7 s^{1}} \end{aligned}$	$\begin{aligned} & 88 \\ & \text { Ra } \\ & 7 s^{2} \end{aligned}$	$\begin{array}{\|c} \hline 103 \\ \mathbf{L r} \\ 5^{\prime} f^{4} 6 d^{2} \\ 7 \mathrm{~s}^{2} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 104 \\ \mathbf{R f} \\ 5 f^{14} 6 d^{2} \\ 7 \mathrm{~s}^{2} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 105 \\ \mathbf{D b} \\ 5 f^{14} 4 d^{3} \\ 7 \mathrm{~s}^{2} \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline 107 \\ \mathbf{B h} \\ 5 f^{14} 6 d^{5} \\ 7 s^{2} \\ \hline \end{array}$	108 Hs $5 f^{146} d^{6}$ $7 \mathrm{~s}^{2}$	$\begin{gathered} 109 \\ \mathbf{M t} \\ 55^{14} 6 d^{7} \\ 7 s^{2} \end{gathered}$	110	111	112		114		116		

Lanthanide series

Actinide series

57	58	59	60	61	62	63	64	65	66	67	68	69	
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
$5 d^{1} 6 s^{2}$	$4 f^{1} 5 d^{1}$ $6 s^{2}$	$4 f^{3} 6 s^{2}$	$4 f^{7} 6 s^{2}$	$4 f^{5} 6 s^{2}$	$4 f^{6} 6 s^{2}$	$4 f^{7} 6 s^{2}$	$\begin{gathered} 4 f^{7} 5 d^{1} \\ 6 s^{2} \end{gathered}$	$4 f^{9} 6 s^{2}$	$4 f^{10} 6 s^{2}$	$4 f^{11} 6 s^{2}$	$4 f^{12} 6 s^{2}$	$4 f^{13} 6 s^{2}$	$4 f^{14} 6 s^{2}$
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
$6 d^{1} 7 s^{2}$	$6 d^{2} 7 s^{2}$	$\begin{gathered} 5 f^{2} 6 d^{1} \\ 7 s^{2} \end{gathered}$	$\begin{gathered} 5 f^{3} 6 d^{1} \\ 7 s^{2} \end{gathered}$	$\begin{aligned} & 5 f^{4} 6 d^{1} \cdot \\ & 7 s^{2} \end{aligned}$	$5 f^{6} 7 s^{2}$	$5 f^{7} 7 s^{2}$	$\begin{gathered} 5 f^{7} 6 d^{1} \\ 7 s^{2} \end{gathered}$	$5 f^{9} 7 s^{2}$	$5 f^{10} 7 s^{2}$	$5 f^{11} 7 s^{2}$	$5 f^{12} 7 s^{2}$	$5 f^{13} 7 s^{2}$	$5 f^{14} 7 s^{2}$

Metals \square Metalloids \square Nonmetals

Lewis Symbols

- the valence electrons are in an out electron shell of an atom. we represent the valence electrons as dots around the symbol for the element.

Be

- The number of electrons available for bonding are indicated by unpaired dots.
- These symbols are called Lewis symbols.
- We generally place the electrons on four sides of a square around the element symbol.

If an atom has more than 4 electrons, we form electron pairs

The Octet (8) Rule

All noble gases except He have an $s^{2} p^{6}$ configuration (8 electrons). All atoms try to get configuration of a nearest noble gas

- Octet rule: atoms tend to gain, lose, or share electrons until they are surrounded by 8 valence electrons (4 electron pairs).

-Caution: there are many exceptions to the octet rule starting from the 3 period.

Special rule for hydrogen

For hydrogen- duet (2 electrons)

Nearest noble gas to H is $\mathrm{He}\left(\mathbf{1 s}^{\mathbf{2}}\right)$

So, hydrogen tends to achieve electron configuration on He

Lewis Structures

- Covalent bonds can be represented by the Lewis symbols of the elements:

- In Lewis structures, each pair of electrons in a bond is represented by a single line:

Multiple Bonds

- It is possible for more than one pair of electrons to be shared between two atoms (multiple bonds):

$$
\mathrm{H}-\mathrm{H} \quad \ddot{\mathrm{O}}=\ddot{O} \quad: \mathrm{N} \equiv \mathrm{~N}:
$$

- One shared pair of electrons = single bond (e.g. H_{2});
- Two shared pairs of electrons = double bond (e.g. O_{2});
- Three shared pairs of electrons = triple bond (e.g. \mathbf{N}_{2}).
- Generally, bond distances decrease as we move from single through double to triple bonds.

The pair of electrons which is not involved in bonding is called a LONE PAIR

Drawing Lewis Structures

Our goals are to predict:
a) the lowest energy structure (most thermodynamically stable)
b) its properties (bond lengths, atomic charges, dipole moment, chemical reactivities)

General rules:

1. Show ALL the valence electrons with dots
2. Provide octet (8 electrons) for each atom.

For hydrogen- duet (2 electrons)
3. Sometimes, multiple bonds are needed for octet. Multiple bonds are typical of C, N, O, P, S. Hydrogen NEVER forms multiple bonds

Skeletal Structures:

Atoms are in order in which they are bonded

CH_{4}, methane

Acetic acid

H - always a terminal atom
C - always a central atom

Atoms with lower electronegativity are usually central

H and Halogens (F, CI, Br, I) do not form multiple bonds

$$
\mathrm{H}_{2} \mathrm{SO}_{4}
$$

A strategy for writing Lewis structures from formulas

1. Calculate the number of valence electrons

$$
\mathrm{PO}_{4}{ }^{3-}: \quad 5(\mathrm{P})+4 \times 6(\mathrm{O})+3(\text { from charge })=32 \mathrm{e}
$$

$\mathrm{NH}_{4}{ }^{+}$: $5(\mathrm{~N})+4 \times 1(\mathrm{H})-1$ (from charge $=8 \mathrm{e}$
2. Identify the central atom(s) and terminal atoms
3. Write a plausible skeletal structure(s) using single covalent bonds (A —B, - represents 2 electrons)
4. The remaining valence electrons form lone pairs
5. Use lone pairs first to complete octet for terminal atoms, then, if possible, for central atoms

Sample:
$\mathrm{C}_{2} \mathrm{~N}_{2}$

1. Total number of valence electrons: 2×4 (fromC) $+2 \times 5($ fromN $)=18$
2. Skeletal structure (less electronegative- in the middle):

$$
\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{N}
$$

3. Complete octet for terminal atoms (6 e are used for 3 single bonds, 12 are left)

4. Carbon atoms do not have octet: use lone pairs to form multiple bonds

$\bullet \bullet N=\mathrm{C}=\mathrm{C}=\mathrm{N} \bullet$
