### CHEM421 FROM MOLECULAR STRUCTURE TO FUNCTION





Solving Schrödinger equation gives quantum numbers, describing electrons

$$-i\hbar\frac{\partial\Psi}{\partial t} = \stackrel{\wedge}{H}\Psi$$

n- principle number (energy), l- orbital angular momentum (shape of the electron cloud, s, p, d, f, ), m<sub>l</sub>- magnetic quantum number (maximum possible number of similar shapes of the same energy: 1 for s,, 3 for p, 5 for d, 7 for f)

s- spin magnetic momentum must be introduced for nonrelativistic Schrödinger equation

### **ELECTRONIC STRUCTURES OF ATOMS**

| <ul> <li>Principal Quantum Number</li> </ul> | n (1,2, 3, N)                   |
|----------------------------------------------|---------------------------------|
| orbital angular momentum                     | ℓ = 0, 1, n-1                   |
| Magnetic Quantum Number,                     | m <sub>ℓ</sub> . = - ℓ, 0, +ℓ   |
| Spin magnetic momentum                       | m <sub>s</sub> , (+1/2 and -1/2 |

s-orbitals (1), p-orbitals (3), d-orbitals (5), f-orbitals (7)

•electrons fill orbitals starting with lowest *n* and moving upwards

•no two electrons can fill one orbital with the same spin (Pauli)

•for degenerate orbitals (same energy), electrons fill each orbital singly before any orbital gets a second electron. Total spin should be maximum possible. (Hund's rule).

#### Sample

Which set of n ,  $\,$  I , and  $m_{I}\,\,$  is incorrect

- 1. 2, 1, 0
- 2. 3, 2, -2
- 3. 2, 2, 1

4. 2, 0, -1

5. 3, 2, 3



• Core electrons: electrons in [Noble Gas].

• Valence electrons: electrons outside of [Noble Gas].



Excited states: C\* 1s<sup>2</sup> 2s<sup>1</sup> 2p<sup>3</sup>



The lanthanides and actinides have the *f*-orbital filled.

- Representative *s*-block elements
- Transition metals

Representative *p*-block elements

*f*-Block metals

|      | 1A<br>1                                            |                                                          |                                                                                                   |                                                                                                            |                                                              |                                        |                                            |                                                              |                                                    |                                                                            |                                                                   |                                                    |                                                                                   |                                                             |                                          |                                                            |                                                      | 8A<br>18                                                                       |
|------|----------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------|--------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------|------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------|
| Core | $\begin{array}{c}1\\\mathbf{H}\\1s^{1}\end{array}$ | 2A<br>2                                                  |                                                                                                   |                                                                                                            |                                                              |                                        |                                            |                                                              |                                                    |                                                                            |                                                                   |                                                    | 3A<br>13                                                                          | 4A<br>14                                                    | 5A<br>15                                 | 6A<br>16                                                   | 7A<br>17                                             | $2 \\ He \\ 1s^2$                                                              |
| [He] | $3$ <b>Li</b> $2s^1$                               | $\begin{array}{c} 4 \\ \mathbf{Be} \\ 2s^2 \end{array}$  |                                                                                                   |                                                                                                            |                                                              |                                        |                                            |                                                              |                                                    |                                                                            |                                                                   |                                                    | $5\\ \mathbf{B}\\ 2s^2 2p^1$                                                      | $\begin{array}{c} 6 \\ \mathbf{C} \\ 2s^2 2p^2 \end{array}$ | $7\\\mathbf{N}\\2s^22p^3$                |                                                            | 9<br>$\mathbf{F}$<br>$2s^22p^5$                      | 10<br>Ne<br>$2s^22p^6$                                                         |
| [Ne] | $11 \\ Na \\ 3s^1$                                 | $12 \\ Mg \\ 3s^2$                                       | 3B<br>3                                                                                           | 4B<br>4                                                                                                    | 5B<br>5                                                      | 6B<br>6                                | 7B<br>7                                    | 8                                                            | 8B<br>9                                            | 10                                                                         | 1B<br>11                                                          | 2B<br>12                                           | $13 \\ Al \\ 3s^2 3p^1$                                                           | $14 \\ Si \\ 3s^2 3p^2$                                     | $15 \\ P \\ 3s^2 3p^3$                   |                                                            |                                                      | $18 \\ \mathbf{Ar} \\ 3s^2 3p^6$                                               |
| [Ar] | $19 \\ \mathbf{K} \\ 4s^1$                         | $\begin{array}{c} 20 \\ \mathbf{Ca} \\ 4s^2 \end{array}$ | 21<br>Sc<br>$3d^{1}4s^{2}$                                                                        | $22 \\ Ti \\ 3d^2 4s^2$                                                                                    | $23 \\ \mathbf{V} \\ 3d^34s^2$                               | $24 \\ \mathbf{Cr} \\ 3d^54s^1$        | $25$ <b>Mn</b> $3d^54s^2$                  | 26<br>Fe<br>$3d^{6}4s^{2}$                                   | 27<br>Co<br>$3d^{7}4s^{2}$                         | 28<br>Ni<br>$3d^{8}4s^{2}$                                                 | $29 \\ Cu \\ 3d^{10}4s^1$                                         | $30 \\ Zn \\ 3d^{10}4s^2$                          | $\begin{array}{c} 31 \\ \textbf{Ga} \\ {}^{3d^{10}4s^2} \\ {}^{4p^1} \end{array}$ | $32 \\ Ge \\ 3d^{10}4s^2 \\ 4p^2 $                          | $33 \\ As \\ 3d^{10}4s^2 \\ 4p^3$        | ${ 34 \atop { {Se} \atop {3d^{10}4s^2} \atop {4p^4} } } }$ | $35 \\ Br \\ 3d^{10}4s^2 \\ 4p^5$                    | ${ 36 \\ {\bf Kr} \\ 3d^{10}4s^2 \\ 4p^6 }$                                    |
| [Kr] | $37$ <b>Rb</b> $5s^1$                              | $38$ <b>Sr</b> $5s^2$                                    | $39 \\ \mathbf{Y} \\ 4d^{1}5s^{2}$                                                                | $\begin{array}{c} 40 \\ \mathbf{Zr} \\ 4d^2 5s^2 \end{array}$                                              | $\begin{array}{c} 41 \\ \mathbf{Nb} \\ 4d^35s^2 \end{array}$ | 42<br><b>Mo</b><br>$4d^55s^1$          | 43<br><b>Tc</b><br>$4d^{5}5s^{2}$          | $\begin{array}{c} 44 \\ \mathbf{Ru} \\ 4d^75s^1 \end{array}$ | $45 \\ Rh \\ 4d^85s^1$                             | $46 \\ Pd \\ 4d^{10}$                                                      | $\begin{array}{c} 47 \\ \mathbf{Ag} \\ 4d^{10}5s^{1} \end{array}$ | $48 \\ Cd \\ 4d^{10}5s^2$                          | $\begin{array}{c} 49 \\ {\bf In} \\ 4d^{10}5s^2 \\ 5p^1 \end{array}$              | $50 \\ Sn \\ 4d^{10}5s^2 \\ 5p^2$                           | $51 \\ {\bf Sb} \\ 4d^{10}5s^2 \\ 5p^3$  | $52 \\ Te \\ 4d^{10}5s^2 \\ 5p^4$                          | $53 \\ I \\ 4d^{10}5s^2 \\ 5p^5$                     | $54 \\ Xe \\ 4d^{10}5s^2 \\ 5p^6$                                              |
| [Xe] | $55 \\ \mathbf{Cs} \\ 6s^1$                        | $56 \\ Ba \\ 6s^2$                                       | 71<br>Lu<br>$4f^{14}5d^1$<br>$6s^2$                                                               | $72 \\ Hf \\ 4f^{14}5d^2 \\ 6s^2$                                                                          | $73 \\ Ta \\ 4f^{14}5d^3 \\ 6s^2$                            | $74 \\ W \\ 4f^{14}5d^4 \\ 6s^2$       | 75<br><b>Re</b><br>$4f^{14}5d^5$<br>$6s^2$ | 76<br>Os<br>$4f^{14}5d^6$<br>$6s^2$                          | $77 \\ Ir \\ 4f^{14}5d^7 \\ 6s^2$                  | $78 \\ Pt \\ 4f^{14}5d^9 \\ 6s^1$                                          | $79 \\ Au \\ 4f^{14}5d^{10} \\ 6s^1$                              | $80 \\ Hg \\ 4f^{14}5d^{10} \\ 6s^2$               | $81 \\ Tl \\ 4f^{14}5d^{10} \\ 6s^26p^1$                                          | $82 \\ Pb \\ 4f^{14}5d^{10} \\ 6s^26p^2$                    | $83 \\ Bi \\ 4f^{14}5d^{10} \\ 6s^26p^3$ | $84 \\ \textbf{Po} \\ 4f^{14}5d^{10} \\ 6s^26p^4$          | $85 \\ At \\ 4f^{14}5d^{10} \\ 6s^26p^5$             | $\begin{array}{c} 86 \\ \mathbf{Rn} \\ 4f^{14}5d^{10} \\ 6s^26p^6 \end{array}$ |
| [Rn] | 87<br>Fr<br>7s <sup>1</sup>                        | 88<br><b>Ra</b><br>7s <sup>2</sup>                       | $     \begin{array}{r}       103 \\       Lr \\       5f^{14}6d^1 \\       7s^2     \end{array} $ | $     \begin{array}{r}       104 \\       \mathbf{Rf} \\       5f^{14}6d^2 \\       7s^2     \end{array} $ | $105 \\ Db \\ 5f^{14}6d^3 \\ 7s^2$                           | $106 \\ Sg \\ 5f^{14}6d^4 \\ 7s^2$     | $107 \\ Bh \\ 5f^{14}6d^5 \\ 7s^2$         | $108 \\ Hs \\ 5f^{14}6d^6 \\ 7s^2$                           | $109 \\ Mt \\ 5f^{14}6d^7 \\ 7s^2$                 | 110                                                                        | 111                                                               | 112                                                |                                                                                   | 114                                                         |                                          | 116                                                        |                                                      |                                                                                |
| [Xe] | Lanthanide<br>series                               |                                                          | $57$ <b>La</b> $5d^{1}6s^{2}$                                                                     | $58 \\ Ce \\ 4f^{1}5d^{1} \\ 6s^{2}$                                                                       | $59 \\ Pr \\ 4f^{3}6s^{2}$                                   | $60 \\ Nd \\ 4f^{7}6s^{2}$             | $61 \\ \mathbf{Pm} \\ 4f^5 6s^2$           | $62 \\ \mathbf{Sm} \\ 4f^{6}6s^{2}$                          | $63 \\ Eu \\ 4f^7 6s^2$                            | $\begin{array}{c} 64 \\ \mathbf{Gd} \\ 4f^{7}5d^{1} \\ 6s^{2} \end{array}$ | $65 \\ Tb \\ 4f^{9}6s^{2}$                                        | $66 \\ Dy \\ 4f^{10}6s^2$                          | $67 \\ Ho \\ 4f^{11}6s^2$                                                         | $68 \\ \mathbf{Er} \\ 4f^{12}6s^2$                          | $69 \\ Tm \\ 4f^{13}6s^2$                | 70<br><b>Yb</b><br>$4f^{14}6s^2$                           |                                                      |                                                                                |
| [Rn] | Actinide series                                    |                                                          |                                                                                                   | $89 \\ Ac \\ 6d^{1}7s^{2}$                                                                                 | $90 \\ \mathbf{Th} \\ 6d^27s^2$                              | 91<br>Pa<br>$5f^{2}6d^{1}$<br>$7s^{2}$ | 92<br>U<br>$5f^{3}6d^{1}$<br>$7s^{2}$      | 93<br>Np<br>$5f^{4}6d^{1}$<br>$7s^{2}$                       | 94<br><b>Pu</b><br>5f <sup>6</sup> 7s <sup>2</sup> | 95<br><b>Am</b><br>5f <sup>7</sup> 7s <sup>2</sup>                         | 96<br><b>Cm</b><br>$5f^{7}6d^{1}$<br>$7s^{2}$                     | 97<br><b>Bk</b><br>5f <sup>9</sup> 7s <sup>2</sup> | 98<br>Cf<br>5f <sup>10</sup> 7s <sup>2</sup>                                      | 99<br>Es<br>5f <sup>11</sup> 7s <sup>2</sup>                | $100 \ Fm \ 5f^{12}7s^2$                 | 101<br><b>Md</b><br>5f <sup>13</sup> 7s <sup>2</sup>       | 102<br><b>No</b><br>5f <sup>14</sup> 7s <sup>2</sup> |                                                                                |
|      |                                                    |                                                          |                                                                                                   | N                                                                                                          | Aetals                                                       |                                        | Meta                                       | lloids                                                       |                                                    | Non                                                                        | netals                                                            |                                                    |                                                                                   |                                                             |                                          |                                                            |                                                      |                                                                                |

# Lewis Symbols

•

Ν

- the valence electrons are in an out electron shell of an atom. we represent the valence electrons as dots around the symbol for the element.
- The number of electrons available for bonding are indicated by unpaired dots.
- These symbols are called Lewis symbols.
- We generally place the electrons on four sides of a square around the element symbol.

C

If an atom has more than 4 electrons, we form electron pairs

# The Octet (8) Rule

All noble gases except He have an  $s^2p^6$  configuration (8 electrons). All atoms try to get configuration of a nearest noble gas

• **Octet rule**: atoms tend to gain, lose, or share electrons until they are surrounded by 8 valence electrons (4 electron pairs).



•<u>Caution: there are many exceptions to the octet rule starting</u> from the 3 period. Special rule for hydrogen

For hydrogen- duet (2 electrons)

Nearest noble gas to H is He (1s<sup>2</sup>)

So, hydrogen tends to achieve electron configuration on He

#### **Lewis Structures**

• Covalent bonds can be represented by the Lewis symbols of the elements:

$$Cl + Cl : \longrightarrow Cl :Cl$$

 In Lewis structures, each pair of electrons in a bond is represented by a single line:



 It is possible for more than one pair of electrons to be shared between two atoms (multiple bonds):

 $H-H \qquad O=O \qquad : N\equiv N:$ 

- One shared pair of electrons = single bond (e.g. H<sub>2</sub>);
- Two shared pairs of electrons = double bond (e.g. O<sub>2</sub>);
- Three shared pairs of electrons = triple bond (e.g.  $N_2$ ).

 Generally, bond distances decrease as we move from single through double to triple bonds.

The pair of electrons which is not involved in bonding is called a LONE PAIR

# **Drawing Lewis Structures**

Our goals are to predict:

- a) the lowest energy structure (most thermodynamically stable)
- b) its properties (bond lengths, atomic charges, dipole moment, chemical reactivities)

General rules:

- 1. Show ALL the valence electrons with dots
- 2. Provide octet (8 electrons) for each atom. For hydrogen- duet (2 electrons)

3. Sometimes, multiple bonds are needed for octet. Multiple bonds are typical of C, N, O, P, S. Hydrogen NEVER forms multiple bonds

## **Skeletal Structures:**

Atoms are in order in which they are bonded



CH<sub>4</sub>, methane

Acetic acid

- H always a terminal atom
- C always a central atom

Atoms with lower electronegativity are usually central



H and Halogens (F, Cl, Br, I) do not form multiple bonds

#### A strategy for writing Lewis structures from formulas

#### 1. Calculate the number of valence electrons

 $PO_4^{3-}$ : 5 (P) + 4x6 (O) + 3 (from charge) = 32 e

 $NH_{4}^{+}$ : 5 (N) + 4x1 (H) -1 (from charge = 8e

2. Identify the central atom(s) and terminal atoms

- 3. Write a plausible skeletal structure(s) using single covalent bonds (A B, represents 2 electrons)
- 4. The remaining valence electrons form lone pairs

5. Use lone pairs first to complete octet for terminal atoms, then, if possible, for central atoms

Sample:

 $C_2N_2$ 

1. Total number of valence electrons: 2x4(fromC) + 2x5(fromN)=18

2. Skeletal structure (less electronegative- in the middle):

3. Complete octet for terminal atoms (6e are used for 3 single bonds, 12 are left )

4. Carbon atoms do not have octet: use lone pairs to form multiple bonds

