Bond dipoles, molecular dipoles, quadrupoles

Bond dipole- local momentum associated with polar covalent bond

$$
\text { 1D= } 0.39 \text { au (atomic unit) }
$$

au: unit of mass- electron mass, unit of charge- proton charge, unit of angular momentum- \hbar

Molecular dipole moments- watch for symmetry!

Compare μ (D)

Quadrupole, octupole,.. (multipoles)

Multipoles- interaction of arrays of point charges

n -pole- an array of n point charges with an n-pole moment but NO lower moments

Monopole: point charge, monopole moment- the overall charge
Dipole- array of two point charges with no net charge (no monopole moment)

Quadrupole: array of 4 charges, no dipole moment, no net charge

Octupole- 8 point charges, no quadrupole

For inter-molecular forces:
The interaction falls off more rapidly with higher order of n-poles

Dipole-dipole interaction: r^{-3} (usually about $2 \mathrm{~kJ} / \mathrm{mol}$)
2^{n}-pole with 2^{m} pole: $1 /\left(n^{n+m-1}\right)$
Quadrupole-quadrupole: $1 / r^{4+4-1}=r^{-7}$
n-poles and molecular orbitals

Standard bond angles are know for organic systems. Standard bond lengths?
Typical bond lengths, in $\AA \AA$, for some covalent bonds:
Single bonds:

$\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{C}\left(\mathrm{sp}^{3}\right)$		1.53-1.55	Double bonds		
$\mathrm{C}\left(\mathrm{sp}^{3}-\mathrm{C}\left(\mathrm{sp}^{2}\right)\right.$		$\begin{aligned} & 1.53-1.55 \\ & 1.49-1.52 \end{aligned}$	$\mathrm{C}\left(\mathrm{sp}^{2}\right)$-C(sp ${ }^{2}$)	alkenes	1.31-1.34
$\mathrm{C}\left(\mathrm{sp}^{2}\right)$ - $\mathrm{C}\left(\mathrm{sp}^{2}\right)$		1.49-1.52	$\mathrm{C}\left(\mathrm{sp}^{2}\right)$-C(sp ${ }^{2}$)	arenes	1.38-1.40
			$\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{O}\left(\mathrm{sp}^{2}\right)$	aldehydes and	
conjugated		1.45-1.46		ketones	1.19-1.22
nonc	gated	1.47-1.48	$\mathrm{C}\left(\mathrm{sp}^{2}\right) \mathrm{O}\left(\mathrm{sp}^{2}\right)$	esters	1.19-1.20
C(sp)-C(sp)		1.37-1.38		amides	
$\mathrm{C}\left(\mathrm{sp}^{3}\right)$ - ${ }^{\left(s p p^{3}\right)}$	ethers	1.42-1.44	$\mathrm{C}\left(\mathbf{s p}^{2}\right)-\mathrm{O}\left(\mathrm{sp}^{2}\right)$	amides	$\begin{aligned} & 1.225-1.24 \\ & 135 \end{aligned}$
$\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{N}\left(\mathrm{sp}^{3}\right)$	amines	1.46-1.48	C($\mathbf{s p}^{2}$)-N(sp ${ }^{2}$)	imines	1.35
C-F		1.39-1.43	Triple bonds		
$\mathrm{C}-\mathrm{Cl}$		1.78-1.85	C(sp)-C(sp)	alkynes	1.17-1.20
$\mathrm{C}-\mathrm{Br}$		1.95-1.98			
C-I		2.15-2.18			
C(sp 3)-H		1.09-1.10			
$\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$		1.075-1.0			
C(sp)-H		1.06			
$\mathrm{N}-\mathrm{H}$		1.00-1.02			
O-H		0.96-0.97			

Covalent, Ionic, and van der Waals radii (in \AA) of Selected Atoms

Atom	Covalent	vdW	ion	lonic
C	0.77	1.68	-	-
H	0.30	1.11	H^{-}	2.08
N	0.70	1.53	-	-
O	0.66	1.50	-	-
F	0.64	1.51	$\mathrm{~F}^{-}$	1.36
Cl	0.99	1.84	Cl^{-}	1.81
Br	1.14	1.96	Br	1.95
I	1.33	2.13	F	2.16

Polarizability: the ability of the electron cloud to distort in response to an external electric field

As a result, the induced dipole appears in addition to permanent dipole (if present)

> Polarizability= magnitude of the dipole induced by one unit of field gradient (in units of volume, cm^{3})

Atomic polarizabilities ($\alpha, \AA^{3}=\mathrm{cm}^{3} \times 10^{-24}$)

0.6668						$H e$	
C	1.76	N	1.10	O	0.802	F	0.557
		P	3.13	S	2.90	CI	2.18
						Br	3.05
						I	≈ 5.0

Selected molecular polarizabilities

CH_{4}	2.6	NH_{3}	2.21	$\mathrm{H}_{2} \mathrm{O}$	1.45	$\mathrm{H}_{2} \mathrm{~S}$	3.8
CO_{2}	2.91	CS_{2}	8.8	CF_{4}	3.84	CCl_{4}	11.2
$\mathrm{C}_{2} \mathrm{H}_{2}$	3.6	$\mathrm{C}_{2} \mathrm{H}_{4}$	4.25	$\mathrm{C}_{2} \mathrm{H}_{6}$	4.45	$\mathrm{CH}_{3} \mathrm{OH}$	3.23
Benzene	10.32	Cyc	ene	10.7	Cyc	ane	11.0

Symmetry of molecular systems

Symmetry elements: plane, axis and point (center of inversion)

Symmetry operations:

1. rotation about a proper axis. For example, \mathbf{C}_{2} means rotation about 360\%/2 (180 $)$, C_{3} - rotation about $360^{\circ} / 3\left(120^{\circ}\right)$, where n is an order of the axis.
2. reflection in a plane of symmetry, $\boldsymbol{\sigma}$. there are 3 types of planes. $\boldsymbol{\sigma}_{\mathrm{h}}$ is perpendicular to $\boldsymbol{C}_{\mathrm{n}}$ (main axis); $\boldsymbol{\sigma}_{\mathrm{v}}$ contains the main axis, $\boldsymbol{\sigma}_{\mathrm{d}}$ divides in half the angle between the two \mathbf{C}_{2} which are perpendicular to $\mathbf{C}_{\mathbf{n}}$.
3. inversion of all atoms through a center of symmetry, (center of inversion) denoted as $i . \mathrm{C}_{2} \times \boldsymbol{\sigma}_{\mathrm{h}}=\mathbf{i}$
4. identity operation E - position of atoms do not changecorresponds to the rotation about 360°.

All other operations is just a combination of the symmetry operations described above.

Of particular importance is rotation about an axis, \mathbf{C}_{n}, followed by reflection through the plane perpendicular to the axis, $\boldsymbol{\sigma}_{\mathrm{h}}$. This operation is called a rotation about an improper axis, denoted as \mathbf{S}_{n}.

A necessary and sufficient criterion for chirality is an absence of S_{n} axes. If any S_{n} exists the structure is achiral

$$
\text { Symmetry elements of } \mathrm{H}_{2} \mathrm{O}
$$

Identity operation

$\mathrm{H}_{2} \mathrm{O}$ has 4 elements of symmetry: $\mathrm{E}_{1} \mathrm{C}_{2}$, and $2 \sigma_{v}$ This set of elements is called a $\mathrm{C}_{2 \mathrm{~V}}$ symmetry group

Symmetry elements of NH_{3} :

Trigonal pyramidal

Rotation about 120°

NH_{3} has 5 elements of symmetry: $\mathrm{E}, \mathrm{C}_{3}$, and $3 \sigma_{v}$ This set of elements is called a $\mathrm{C}_{3 v}$ symmetry group.

Symmetry groups:
No axis other than $\mathrm{C}_{1}: \mathrm{C}_{1}$ (no symmetry), $\mathrm{C}_{\mathrm{s}}, \mathrm{C}_{\mathrm{i}}$

2. Only one axis with $n>1: C_{n}, S_{n}, C_{n v}, C_{n h}$

dihedral groups, D : contain C_{n} and n_{2} perpendicular to C_{n}. $D_{n}, D_{n h}, D_{n d}$

$\mathrm{D}_{2 \mathrm{~d}}$

The cubic groups: $\mathrm{Td}\left(\mathrm{E}, 8 \mathrm{C}_{3}, 3 \mathrm{C}_{2}, 6 \mathrm{~S}_{4}, 6 \sigma_{\mathrm{d}}\right)$, Oh

