Multiple Choice Questions (12 points, 2 each): answer the following multiple choice questions by circling the best response in each case.

 

 

1.      The Cl-C-Cl bond angle in the COCl2 molecule is approximately:

  1. 92o
  2. 104.5o
  3. 114o
  4. 123o
  5. greater than 180o

 

2.      The hybridization of the central atom in ICl2 - anion is

  1. sp
  2. sp2
  3. sp3
  4. sp3d
  5. sp3d2

 

3. Which of the following reactions will have the largest DE value?

 

a.       Cu(g) g Cu+(g) + e-

b.      Mg(g) g Mg+(g) + e-  

c.       S(g) g S+(g) + e-        

d.      Si(g) g Si+(g) + e-

e.       Cs(g) g Cs+(g) + e-

 

4. Which of the following molecules cannot form a hydrogen bond with a water molecule?

 

a.       NH3

b.      H2O

c.       HF

d.      CH4

e.       CH3OH

 

5. How many electrons can have the following quantum numbers: n = 4; l = 2; ms = -½

 

a.       2

b.      3

c.       5

d.      6

e.       10

 

6. The heat energy that one gram of a substance needs to absorb in order for its temperature to increase by 1oC (1 K) is called its

 

a.       kinetic energy

b.      specific heat capacity

c.       heat transfer

d.      calorimetry

e.       enthalpy of formation

 

 

 

Short Answer (40 points, 4 each): answer each of the following short-answer questions

 

7. Calculate the temperature change that occurs when 30.0 kJ of heat is added to 1.00 kg of H2O (s(H2O) = 4.184 kJ/kg °C)

 

8. Identify (name and structure) the product(s) of the reaction between 1 mole of 2-butyne and 1 mole of chlorine (Cl2).

 

9. Write electron configurations for the following atoms and ions:

 

Br:

N-:

Fe3+:

Cu:

 

10a. Under what set of conditions will a reaction never be spontaneous?

 

 

b. Is it correct to say that a non-spontaneous reaction can never be made to occur?  Justify your answer (briefly).

 

 

11. Does the NBr3 molecule have a dipole moment? If so, in which direction does the dipole point? (indicate with a suitable structure/picture)

 

 

 

 

 

 

 

 

 

 

12a. Indicate the major (strongest) intermolecular force that exists in samples of each of the following compounds.

b. Circle the one that should possess the highest boiling point.

 

C5H11OH         ________________________

 

NO                  ________________________

 

C6H14               ________________________

 

 

13. Iodide ion is oxidized in acidic solution to triiodide ion, I3-, by hydrogen peroxide.

 

H2O2 (aq)  +  3I- (aq)   + 2H+ (aq)  à  I3- (aq)   +2H2O (l)

 

A series of four experiments was run at different concentrations and the initial rates of formation for I3- were determined.

 

Exp. number        [H2O2], M                 [I-], M             [H+], M           Initial rate, M/s

1                                     0.010               0.010               0.00050           1.15 x 10-6

2                                     0.020               0.010               0.00050           2.30 x 10-6

3                                     0.010               0.020               0.00050           2.30 x 10-6

4                                     0.010               0.010               0.00100           1.15 x 10-6

 

From these data,

(a)  Obtain the reaction orders with respect to H2O2, I-, and H+.

(b)  Write the rate law

 

 

 

 

 

14. The reaction to form aA à Products is second order with a rate constant of 0.413 M-1. s-1.  What is the half-life, in seconds, of the rxn if the initial concentration of A is 5.25 x 10-3 M?

 

 

 

 

15. Consider the nitrate anion, NO3-

a. Write all appropriate Lewis structures.

b. Indicate the formal charges on the nitrogen and oxygen atoms for one of these structures.

 

 

16. For the following reaction, calculate the C-H bond energy given the following data.

 

CO(g) +2H2(g) à CH3OH(l)           ΔHrxn = -128 kJ

 

Bond                              D (kJ/mol)

C≡O                               1072

H-H                                436

C-O                                358

O-H                                467

 

 

 

 

 

 

 

 

 

 

 

Long Answer (48 points, 8 each): answer each of the following questions in the space provided

 

17. Next to each structure below, indicate each structure’s complete systematic name. 

 

 

 

 

 

 

 

 

 

 

18. Write an equation expressing the enthalpy of formation for CuO(s).  Given the following thermochemical equations:

 

2Cu(s) + S(s) à Cu2S(s)                                 DHo = -79.5 kJ

S(s) + O2(g) à SO2(g)                                    DHo = -297 kJ

Cu2S(s) + 2O2(g) à 2CuO(s) + SO2(g)           DHo = -527.5 kJ

 

Calculate the standard enthalpy of formation (in kilojoules per mole) of CuO(s).

 

 

 

19. The reaction 2 NO2(g) D N2O4(g) has DG° = -5.40 kJ/mol of N2O4, at 25°C.  In a reaction mixture, the partial pressure of NO2 is 0.25 atm and the partial pressure of N2O4 is 0.60 atm.  In which direction must this reaction proceed to reach equilibrium?  Explain, using appropriate calculations.

 

 

 

 

 

 

20. When heated, ethyl chloride, CH3CH2Cl, decomposes in a first order reaction to give ethylene and hydrogen chloride.

 

CH3CH2Cl (g)   à   C2H4 (g)  + HCl (g)

 

In an experiment, the initial concentration of ethyl chloride was 0.001M. After heating at 500 0C for 155 s,  this was reduced to 0.00067M. What is the concentration of ethyl chloride after a total of 256 s?

 

 

 

 

 

21.

 

For the structure above, report

a.       the total number of lone pairs of electrons                   __________________

b.      the total number of π-bonds               __________________

c.       the values of the CC1C2, HNH, and HOC3 bond angles (denoted with the “arch” sign)

Bond angles

      CC1C2             ___________________

      HNH                ___________________

      HOC3              ___________________

 

d.      hybridization of the C1 , C2, and C3 atoms

Hybridization

      C1                    ___________________

C2                    ___________________

C3                    ___________________

 

 

 

 

22a. Using the VSEPR theory, draw the structures of

XeCl4

 

 

 

BrCl3

 

 

 

SCl2

 

 

 

 

b. Circle the structure(s) with non-zero dipole moments, if any.

 

 

 

 

 

 

 

 

 

Equations

     

 

    

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

 

 


                                         

 

 

 

 

q = m s Δt

 

 

 

 

 

 

 

Answers:

Multiple choice:

 

1. (c);  2. (d)  3. (c)    4. (d)    5. (c)     6.  (b)   

 

Short Answers

 

7. q = m s Δt;  30.0 kJ = 1.00 kg x 4.184 kJ/kg 0C Δt; Δt = 30.0/(4.184 x1.0) = 7.2 °C

temperature will increase by 7.2  °C.

 

      8. trans-dichloro-2-butene (major product) and cis-dichloro-2-butene (minor product)

 

9. Br: [Ar]3d104s24p5;  N-: 1s22s22p4; Fe+3: [Ar]3d5; Cu: [Ar]3d104s1

 

10. a)ΔS<0; ΔH>0, gives ΔG>0  b) no, it can be made to occur (ΔG= ΔH-T ΔS) by varying temperature and, thus, the entropy factor.

 

11. The molecule has a trigonal pyramidal structure, with electron density shifted from Br atoms towards more electronegative N-atom.

 

12. H-bonding, dipole-dipole, dispersion. C5H11OH has the highest boiling temperature.

 

13. (a)  [H+]0;  [I-]1 [H2O2]1   (b)     rate= k [H2O2][I-]

14. t1/2 = 1/(k x [A0]) = 1/(0.413 M-1s-1 x 5.25 x 10-3 M) = 461 s

15.

 

16. ΔH = Σ D(bond broken) – ΣD (bond formed)

ΔH = (C≡O) + 2(H-H) –[ 3(C-H)  + C-O + O-H] = 1072 + 2x436 – 3(C-H) – 358-467 = -128

x= 416 kJ/mol = C-H bond dissociation energy

 

Long Answers

17  a) 2-butanol; b) trans-2-pentene; c) meta-dinitrobenzene d) methylpropen

 

18. 2Cu(s) + S (s) à Cu2S (s)                         -79.5 kJ

               SO2 (g)  à  S(s) +O2 (g)                  + 297 kJ

     Cu2S (s) + 2O2 (g) à 2CuO(s) + SO2 (g)   -527.5 kJ

2Cu(s) + O2 (g)        à   2CuO(s)                    -310 kJ

for one mole of Cu (s) :    -310/2 = -155kJ/mol

 

19. ΔG = 0 at equilibrium; ΔG = ΔG0 + RT lnQ=0; ΔG0 = -RTlnK

5400J/mol = 8.314 J/mol K 298.2K lnK; lnK = 2.178; K =8.8

 Q = (0.60/0.252) = 9.6; Q>Keq, therefore, rxn must proceed in reverse direction to reach equilibrium.

 

20.  ln[A]t = ln[A]0 –kt    

find k:  ln(0.000670) = ln(0.001) –kx 155 ; k= 2.584 x 10-3  s-1

find concentration after 256s using k

ln[A]t = ln (0.0010) – 2.584 x10-3 s-1 x 256s

[A]t = e-7.5692   = 5.16 x 10-4M

21.a) 5, b) 3  c) CC1C2 = 1800; HNH <109.5; HOC3 <109.5

d) C1 sp; C2 sp3, C3 sp2

 

22.