Symmetry of molecular systems

Symmetry elements: plane, axis and point (center of inversion)

Symmetry operations:

- 1. rotation about a proper axis. For example, \mathbb{C}_2 means rotation about $360^0/2$ (180^0), \mathbb{C}_3 rotation about $360^0/3$ (120^0), where n is an *order* of the axis.
- 2. reflection in a plane of symmetry, σ . there are 3 types of planes. σ_h is $\text{perpendicular to } C_n \text{ (main axis); } \sigma_v \text{ contains the main axis, } \sigma_d \text{ divides in half}$ the angle between the two C_2 which are perpendicular to C_n .
- 3. inversion of all atoms through a center of symmetry, (center of inversion) denoted as \mathbf{i} .
- 4. identity operation ${\bf E}$ position of atoms do not change- corresponds to the rotation about 360° .

All other operations is just a combination of the symmetry operations described above. Of particular importance is rotation about an axis, C_n , followed by reflection through the plane perpendicular to the axis, σ_h . This operation is called a rotation about an $improper\ axis,\ denoted\ as\ S_n.$

Examples:

Symmetry elements of H₂O

Symmetry elements of NH₃:

Symmetry groups:

1. No axis other than C_1 : C_1 (no symmetry), C_s , C_i

2. Only one axis with n>1: C_n , S_n , C_{nv} , C_{nh}

2. dihedral groups, D: contain C_n and n C_2 perpendicular to C_n .

 $D_{n},\,D_{nh},\,D_{nd}$

