Symmetry of molecular systems

Symmetry elements: plane, axis and point (center of inversion)

Symmetry operations:

1. rotation about a proper axis. For example, \mathbf{C}_{2} means rotation about $360^{\circ} / 2\left(180^{\circ}\right)$, $\mathbf{C}_{\mathbf{3}}$ - rotation about $360^{\circ} / 3\left(120^{\circ}\right)$, where n is an order of the axis.
2. reflection in a plane of symmetry, $\boldsymbol{\sigma}$. there are 3 types of planes. $\boldsymbol{\sigma}_{\mathbf{h}}$ is perpendicular to $\mathbf{C}_{\mathbf{n}}$ (main axis); $\boldsymbol{\sigma}_{\mathbf{v}}$ contains the main axis, $\boldsymbol{\sigma}_{\mathbf{d}}$ divides in half the angle between the two $\mathbf{C}_{\mathbf{2}}$ which are perpendicular to $\mathbf{C}_{\mathbf{n}}$.
3. inversion of all atoms through a center of symmetry, (center of inversion) denoted as \mathbf{i}.
4. identity operation \mathbf{E} - position of atoms do not change- corresponds to the rotation about 360°.

All other operations is just a combination of the symmetry operations described above.

Of particular importance is rotation about an axis, $\mathbf{C}_{\mathbf{n}}$, followed by reflection through the plane perpendicular to the axis, $\boldsymbol{\sigma}_{\mathbf{h}}$. This operation is called a rotation about an improper axis, denoted as $\mathbf{S}_{\mathbf{n}}$.

Examples:

Symmetry elements of $\mathrm{H}_{2} \mathrm{O}$

Identity operation

rotation about C_{2}

$\mathrm{H}_{2} \mathrm{O}$ has 4 elements of symmetry: $\mathrm{E}, \mathrm{C}_{2}$, and $2 \sigma_{\mathrm{v}}$ This set of elements is called a $\mathrm{C}_{2 \mathrm{v}}$ symmetry group.

Symmetry elements of NH_{3} :

Trigonal pyramidal

NH_{3} has 5 elements of symmetry: $\mathrm{E}, \mathrm{C}_{3}$, and $3 \sigma_{v}$ This set of elements is called a $C_{3 v}$ symmetry group.

Symmetry groups:

1. No axis other than $\mathrm{C}_{1}: \mathrm{C}_{1}$ (no symmetry), $\mathrm{C}_{\mathrm{s}}, \mathrm{C}_{\mathrm{i}}$

C_{1}

C_{5}

C_{i}
2. Only one axis with $n>1$: $C_{n}, S_{n}, C_{n v}, C_{n h}$

3. dihedral groups, D : contain C_{n} and $n C_{2}$ perpendicular to C_{n}.
$D_{n}, D_{n h}, D_{n d}$

