

Search for charged lepton flavour violation in $\Upsilon(2S) \rightarrow e^{\pm} \mu^{\mp}$ decay

H. Ahmed, and N. Tasneem St. Francis Xavier University & M. Roney University of Victoria

Recall.....

BABAR Collaboration Meeting

- ▶ PHYSICAL REVIEW D 83, 115015 (2011), "New bounds on lepton flavor violating decays of vector mesons and the Z⁰ boson" set an upper bounds Br ($\Upsilon \rightarrow e\mu$) ≤ 3.9×10⁻⁶
- S. Nussinov, et. al. PRD 63, 016003 (2001) estimate the contribution of the virtual vector boson ($\Upsilon(2S)$ in our case) to $\mu \to 3e$ is reduced by a factor of $\frac{m_{\mu}^2}{2M_{\Upsilon(2S)}^2}$, which leads the bound $BR(\Upsilon(2S) \to e^{\pm}\mu^{\mp}) \leq 9.58 \times 10^{-9}$ reduced to $BR(\Upsilon(2S) \to e^{\pm}\mu^{\mp}) \approx 1.7 \times 10^{-4}$

Data and SP samples

- Data: NIMA 726 (2013) 203-213
 ➤Y(2S) OnPeak 13.60 fb⁻¹
 ➤Y(2S) OffPeak 1.419 fb⁻¹
- MC: Continuum

$$e^{+}e^{-} \rightarrow \mu^{+}\mu^{-}$$

$$e^{+}e^{-} \rightarrow \tau^{+}\tau^{-}$$

$$e^{+}e^{-} \rightarrow e^{+}e^{-}$$

$$e^{+}e^{-} \rightarrow uds$$

$$e^{+}e^{-} \rightarrow c\bar{c}$$

- MC: Generic $\Upsilon(2S)$ decays
 - We use 0.995 fb⁻¹ data for this blinded analysis

• MC: Signal events

############	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	+######################################
#		#
# Upsilon(2S)->	e mu	#
# (for lepton	flavor violation studies)	#
# Author: Ben	Hooberman bhoob Mar 11 2008	#
# Modified: Hos	sain Ahmed May 2018	#
############	#######################################	+######################################
Decay Upsilon(2S)	
0.500 e- mu+	PHOTOS VLL;	
0.500 e+ mu-	PHOTOS VLL:	
Enddecay	Die Gestelle is der Die Anne is 🔸	

SP-11974-Run7-Y2S_OnPeak-R24
145,000 events are generated!

Pre-Selections

- ♦ BGF \rightarrow Background filter
 - ▶ BGFMuMu → Events in the dimuon sample required to pass
 - Events in the tau-pair are required to pass BGFTau or BGFTwoProng
 - ► BGFEMuSelector \rightarrow specific filter for emu search
 - TauMiniUser package reads the input collections and process events that pass BGFEMuSelector
 - ➢ BGFEMuSelector efficiency ~ 82%
- Pre-conditions:
 - Distance of closest approach of any track vertex w.r.t. the beam spot in Drift Chamber
 - in the x y plane < 1 cm and in the z plane < 4 cm;
 - two tracks in GoodTracksLoose (one in each hemisphere)
 - DigiFL1Open and DigiFL3Open
 - > Two charge tracks with total charge = 0
 - Sum of momentum of two tracks > 9 GeV/c

Pre-Selections

Data/MC (signal)/SP	Before pre- selection	After pre- selection
$\Upsilon_{DATA}(2S)$	519183811	6691951
$\Upsilon_{MC}(2S)$	145000	118600
$\Upsilon_{generic}(2S)$	115248000	3821026
$e^+e^- \to \mu^+\mu^-$	52555000	36172190
$e^+e^- \to \tau^+\tau^-$	40005000	16774419
$e^+e^- \rightarrow e^+e^-$	72496000	1158500
$e^+e^- \rightarrow uds$	95001000	4419715
$e^+e^- \rightarrow c\bar{c}$	192924000	3419842

MCs are nomalized to 0.995 fb⁻¹ of total data

BABAR Collaboration Meeting

PID Selections

PID Selectors	Survived Events							
	Data	MC	μμ	ττ	сē	uds	Bhabha	Generic
		Signal						
PidLHElectrons(tight) (bit 5)	15607	55384	2796	713641	11666	282	10	48319
NNTightMuonSelection (bit 7)								
LooseKMElectronMicroSelection (bit 8)	42974	69526	8487	1192364	36823	2912	213	79689
BDTLooseMuonSelection(17)								
TightKMElectronMicroSelection (bit 9)	27361	54543	2310	990079	26266	931	83	65622
BDTTightMuonSelection(18)								
VeryTightKMElectronMicroSelection (bit 10)	18966	40758	1376	799807	17746	284	13	53204
BDTVeryTightMuonSelection (bit 19)								
SuperTightKMElectronMicroSelection (bit 11)	32997	57816	1639	1088661	29878	884	171	72200
BDTLooseMuonSelection(17)								
SuperTightKMElectronMicroSelection (bit 11)	24420	46377	1314	932872	23725	522	73	61745
BDTTightMuonSelection(18)								
SuperTightKMElectronMicroSelection (bit 11)	18102	35730	1042	769806	16928	251	10	51204
BDTVeryTightMuonSelection (bit 19)				unn-stary 72 kitaluk ser				

PID Selections

PID Selections (optimization)

 $\frac{\varepsilon_{e\mu}}{\sqrt{1+N_{BG}}}$

- $\succ \varepsilon_{e\mu}$ is the final efficiency as determined from signal MC and
- ▷ N_{BG} is the number of expected background events as prdicted by data control samples in Run 6 and generic $\Upsilon(2S)$ MC events

User Selections (N-1 cuts)

Definition	Selection			
Two tracks (one in each hemisphere)	one electron and one muon in the final state			
Lepton momentum plane	$\left(\frac{p_e}{\sqrt{s}*0.5} - 1\right)^2 + \left(\frac{p_\mu}{\sqrt{s}*0.5} - 1\right)^2 < 0.01$			
Back-to-back	$\theta_{12}^{CM} > 179^0$			
EMC acceptance	$24^0 < \theta_{lab} < 130^0$			
Muon track energy	> 50 MeV			
N Tasneem: FPS talk	Sources of Main Dealayananda			

User Selections (Two Tracks)

(Trk_userpid[0]==0 && Trk_userpid[1]==1) II (Trk_userpid[0]==1 && Trk_userpid[1]==0);

> Applied on events survived after pre-selection

(PID is not included)

(PID is not included)

User Selections (EMC acceptance region)

Trk_Eltheta>0.41 && Trk_Eltheta<2.268 && Trk_Mutheta>0.41 && Trk_Mutheta<2.268;

Applied on events survived after pre-selection

User Selections (Muon Energy in ECal) Trk_Muecal >0.05 GeV

> Applied on events survived after pre-selection

User Selections plus PID

Definition	Selection		
Two tracks (one in each hemisphere)	one electron and one muon in the final sta		
Lepton momentum plane	$\left(\frac{p_e}{\sqrt{s}*0.5} - 1\right)^2 + \left(\frac{p_{\mu}}{\sqrt{s}*0.5} - 1\right)^2 < 0.01$		
Back-to-back	$\theta_{12}^{CM} > 179^0$		
EMC acceptance	$24^0 < \theta_{lab} < 130^0$		
Muon track energy	> 50 MeV		

User selections on:

8, 17	Loose electron, loose muon
11, 17	SuperTight electron, loose muon
11, 19	SuperTight electron, VeryTight muon

All Criteria (N-1 cuts) with PID

PID	Number of sig events (MC)	Number of sig events (Y(2S))	Number of bkg events (Y(2S))
8 &17: Loose electron, loose muon	49039	1	2
11 & 17: SuperTight KMElectron, BDTLooseMuon	42662	1	0
11 & 18:SuperTight KMElectron, BDTTightMuon	34445	1	0
11 & 19: SuperTight KMElectron, BDTVeryTightM uon	26636	1	0

Mass distribution of M_{e*µ}.(GeV)

9/9/21

BABAR Collaboration Meeting

Future works

- Use Run6 data as background (ntuples from Nafisa)
- Systematics
- Unblinding the analysis

Backup slides

We are aiming to analyze: $\Upsilon(2S) \rightarrow e^{\pm}\mu^{\mp}$

$$Y(2S) \rightarrow e^{\pm}\mu^{\mp}$$
Vector exchange
$$V = Y(2S)$$

$$W = U(2S)$$

$$W =$$

$$\begin{split} & \Gamma(W \to e\nu) \sim g_W^2 M_W \\ & \Gamma(V \to e^+ e^-) \sim g_{V_{ee}}^2 M_V \\ & \Gamma(V \to e\mu) \sim g_{V_{e\mu}}^2 M_V \end{split}$$

$$Y(2S) \rightarrow e^{\pm}\mu^{\mp}$$
Using:

$$BR \approx \frac{\Gamma_{i}}{\Gamma_{tot}} -----(1)$$

$$\frac{\Gamma(V \rightarrow e^{+}e^{-})\Gamma(V \rightarrow e^{\pm}\mu^{\mp})}{\Gamma^{2}(W \rightarrow ev)} -----(2)$$

$$\approx \frac{[BR(V \rightarrow e^{+}e^{-})*\Gamma_{V}][BR(V \rightarrow e^{\pm}\mu^{\mp})*\Gamma_{V}]}{[BR(W \rightarrow ev)*\Gamma_{W}]^{2}} -----(3)$$

$$V \cong Y(2S) ------(4)$$

$$BR(Y(2S) \rightarrow e\mu) = BR(\mu \rightarrow eee) \frac{[BR(W \rightarrow ev)*\Gamma_{W}]^{2}}{[BR(Y(2S) \rightarrow e^{+}e^{-})*\Gamma_{Y(2S)}]*\Gamma_{Y(2S)}} \left(\frac{M_{Y(2S)}}{M_{W}}\right)^{6}$$

From: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

----- (5)