

The Search for New Particles at Particle Collider

Hossain Ahmed

Assistant Professor DR. W. F. James Research Scholar Department of Physics, Saint Francis Xavier University Antigonish, Nova Scotia, Canada, B2G 2W5

Abstract: Higgs boson discovery is one of the best scientific achievements in the early 21st century. It quenches lot of our understanding of the universe through the Standard Model. However, many theoretical models and astronomical observations predict the dark matter and dark energy that Standard Model particles can't explain. There are dark matter searches in space, in the ground, and underground. I will give a roadmap of the Higgs boson and the dark matter particles search in the energy range up to 10 GeV in this talk.

Our ancestors, like us, were surprised by

3/29/21

Lightning in thunderbolt •

Shock in touching electric fish ٠

Attracting of small objects by amber while rubbing with fur ٠

Democritus (460 -370 BC)

• Famous student of Leucippus

- Most influential pre-socratic philosopher studying many fields
- Concept of the atom, an indivisible object that made the universe
- Said that atoms are in constant motion

John Dalton (1766 -1844)

- An English Chemist as well as Physicist, gave an evidence-based atomic theory
- All the elements are made of tiny particles called atoms
- Atoms are indivisible, and they are alike for the same element and different for different elements
- Atoms can perform chemical reactions

• $N_A = 6.02 \text{ x } 10^{23} \text{ /mol}$

3/29/21

- Equal volumes of gases under the same conditions of temperature and pressure will contain equal numbers of molecules
- Basis of our understanding that matter is not continuous as it appears, but it quantized (i.e., discrete) on the microscopic scale!

Amedeo Avogadro (1776 – 1856)

- Invented periodic table
- Organized elements by properties
- Arranged elements by atomic mass
- Predicted existance of several unknown elements
- Elements 101

3/29/21

Dmitri Mendeleev (1834 – 1907)

• Pioneeer of electricity

3/29/21

• Inventor of electric battery

Alessandro Volta (1745 – 1827)

• From 1869 – 1896 many physicists studied about electric conductivity, discovered the glow from cathode, named them cathode ray, studies their deflection in electric and magnetic fileds ...

3/29/21

> We couldn't modeled it quite well untill Joseph J. Thomson named it as electron in 1897

- Pioneer particle physicist @ Cavendish laboratory at the Cambridge University
- Inventor of first ever sub-atomic particle "electron"
- Developed "Plum Pudding" model
- Awarded Nobel prize in 1906

3/29/21

• At least eight of his direct students and researchers awarded Nobel prize in Physics and Chemistry!

- Studied radiation, classify them and discovered the concept of radioactive half-life
- Studied interaction of radiation with matter

- Discovered "nucleus" in 1911 with famous alpha particle scattering
- Pioneer particle accelerator who performed first ever nuclear reaction: $N^{14} + \alpha \rightarrow O^{17} + p$
- Rutherford named this building block of nucleus as "proton" (Proton means first in Greek) in 1920

Divisible atom (1932)

James Chadwick (1891 – 1974)

• Discovered neutron in 1932

3/29/21

DISCOVERY OF NEUTRON

11

Less than a century after Mendeleev publish his periodic table, scientists have arrived in a beautiful simplification that all things around us are made from three fundamental particles (electron, proton, and neutron)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 Pnictogens	16 Chalcogens	17 Halogens	18
1	1 H Hydrogen 1.008	Atomic Symbo Name Weight	C	Solid			3 ≥ Lar	Metals	3 7	Metall Po	Nonme	tals Z						2 He Helium 4.0026
2	3 Li Lithium 6.94	4 Be Beryllium 9.0122	Hç	Liqui Gas	d	kali meta	kaline ea	te et de	ansition etals	oids ost-transi etals	eactive onmetals	oble gase	5 B Boron 10.81	6 C Carbon 12.011	7 N Nitrogen 14.007	8 O Oxygen 15.999	9 F Fluorine 18.998	10 Ne Neon 20.180
3	11 Na Sodium 22.990	12 Mg Magnesium 24.305	Rf	Unkn	iown	ls	Act	inoias		tion		õ	13 Al Aluminium 26.982	14 Si Silicon 28.085	15 P Phosphorus 30.974	16 S Sulfur 32.06	17 Cl Chlorine 35.45	18 Ar Argon 39.948
4	19 K Potassium 39.098	20 Ca Calcium 40.078	21 Sc Scandium 44.956	22 Ti Titanium 47.867	23 V Vanadium 50.942	24 Cr Chromium 51.996	25 Mn Manganese 54.938	26 Fe Iron 55.845	27 Co Cobalt 58.933	28 Ni Nickel 58.693	29 Cu Copper 63.546	30 Zn Zinc 65.38	31 Ga Gallium 69.723	32 Ge Germanium 72.630	33 As Arsenic 74.922	34 Se Selenium 78.971	35 Br Bromine 79.904	36 Kr Krypton 83.798
5	37 Rb Rubidium 85.468	38 Sr Strontium 87.62	39 Y Yttrium 88.906	40 Zr Zirconium 91.224	41 Nb Niobium 92.906	42 Mo Molybdenum 95.95	43 Tc Technetium (98)	44 Ru Ruthenium 101.07	45 Rh Rhodium 102.91	46 Pd Palladium 106.42	47 Ag Silver 107.87	48 Cd Cadmium 112.41	49 In Indium 114.82	50 Sn ^{Tin} 118.71	51 Sb Antimony 121.76	52 Te Tellurium 127.60	53 lodine 126.90	54 Xe Xenon 131.29
6	55 Cs Caesium 132.91	56 Ba Barium 137.33	57–71	72 Hf Hafnium 178.49	73 Ta Tantalum 180.95	74 W Tungsten 183.84	75 Re Rhenium 186.21	76 Os Osmium 190.23	77 Ir Iridium 192.22	78 Pt Platinum 195.08	79 Au ^{Gold} 196.97	80 Hg Mercury 200.59	81 TI Thallium 204.38	82 Pb Lead 207.2	83 Bi Bismuth 208.98	84 Po Polonium (209)	85 At Astatine (210)	86 Rn Radon (222)
7	87 Fr Francium (223)	88 Ra Radium (226)	89–103	104 Rf Rutherfordium (267)	105 Db Dubnium (268)	106 Sg Seaborgium (269)	107 Bh Bohrium (270)	108 Hs Hassium (277)	109 Mt Meitnerium (278)	110 Ds Darmstadtium (281)	111 Rg Roentgenium (282)	112 Cn Copernicium (285)	113 Nh Nihonium (286)	114 Fl Flerovium (289)	115 Mc Moscovium (290)	116 Lv Livermorium (293)	117 Ts Tennessine (294)	118 Og Oganesson (294)
	For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.																	
			6	57 La Lanthanum 138.91	58 Ce Cerium 140.12	59 Pr Praseodymium 140.91	60 Nd Neodymium 144.24	61 Pm Promethium (145)	62 Sm Samarium 150.36	63 Eu Europium 151.96	64 Gd Gadolinium 157.25	65 Tb Terbium 158.93	66 Dy Dysprosium 162.50	67 HO Holmium 164.93	68 Er Erbium 167.26	69 Tm Thulium 168.93	70 Yb Ytterbium 173.05	71 Lu Lutetium 174.97
			7	89 Ac Actinium (227)	90 Th Thorium 232.04	91 Pa Protactinium 231.04	92 U Uranium 238.03	93 Np Neptunium (237)	94 Pu Plutonium (244)	95 Am Americium (243)	96 Cm (247)	97 Bk Berkelium (247)	98 Cf Californium (251)	99 Es Einsteinium (252)	100 Fm Fermium (257)	101 Md Mendelevium (258)	102 No Nobelium (259)	103 Lr Lawrencium (266)

Colloquium @ Deaprtment of Physics at Jazan University

Hideki Yukawa (1907 - 1981)

Q. What holds nucleons together?

Colloquium @ Deaprtment of Physics at Jazan University

nucleons

meson

Colloquium @ Deaprtment of Physics at Jazan University

Subatomic era (1932-1964)

Problem arises when scientists discovered many new \succ particles in cosmic rays and in the particle accelerators

 $\mu + \nu$

Powell's group exposed their photographic emulsions on mountain tops

> Those particles can't be explained by the there fundamental particles; the proton; the neutron; and the electron

$\left(\beta mc^2 + \sum_{k=1}^3 \alpha_k p_k c\right) \psi(\mathbf{x}, t) = i\hbar \frac{\partial \psi(\mathbf{x}, t)}{\partial t}$

3/29/21

15

While studying "cloud-chamber" photographs of cosmic rays, Anderson found a number of tracks whose orientation suggested that they were caused by positively charged particles-- but particles too small to be protons.

3/29/21

Carl Anderson (1905 - 1991)

 $A \rightarrow B + e^{-1}$ <u>e.g.</u> ${}_{0}^{1}n \rightarrow {}_{1}^{1}p + {}_{-1}^{0}e$ 1.008665 u \rightarrow 1.007825u (1.007276u + 0.00054858u)

- On 4 December 1930, Austrian theorist Wolfgang Pauli wrote a famous letter in which he dared to hypothesize the existence of new particle the particle now known as the neutrino (v).
- Fermi called this missing energy particles is "neutrino"

3/29/21

$n \rightarrow p + e^- + \bar{\nu}$

In the mid 1950's, Fred Reines & Clyde L. Cowan, Jr. came up with an experiment to verify the existence of the neutrino and discovered it in 1956.

- So far, we learn about, 1. Electron 2. Proton 3. Neutron 4. Muon 5. Pion 6. Positron 7. Neutrino
- We are now familiar with forces, which are three out of four basic forces in nature: Electromagnetic, Strong, and Weak force
- In 1950's physicists thought all the predictions are observed and the particle physics more or less complete:

a) Yukawa's middle weight particle was found (Pion or pi-meson)

- b) Dirac's negative energy puzzle was solved by finding the positron
- c) Neutrino problem was also addressed!

Isidor Isaac Rabi (1898-1988)

One tiny question on MUON!

Who ordered that?

- Within a decade (1950-1960) particle accelerator established and several new particles are discovered, e.g. Kaons, Lamda, Rho, Phi, Omega, and many more
- ✤ Scientists were running out of symbol to name them
- ↔ Willis Lamb began his Nobel Prize acceptance speech in 1955 with the words:

When the Nobel Prizes were first awarded in 1901, physicists knew something of just two objects which are now called "elementary particles": the electron and the proton. A deluge of other "elementary" particles appeared after 1930; neutron, neutrino, meson, heavier mesons, and various hyperons. I have heard it said that "the finder of a new elementary particle used to be rewarded by a Nobel Prize, but such a discovery now ought to be punished by a \$10,000 fine". [Source: Les Prix Nobel 1955, The Nobel Foundation, Stockholm.]

Willis Lamb (1913-2008)

- ✤ Murray Gell-Mann is known as the Mendeleev of elementary particle
- He introduce eight-fold way in 1961 where he arranged eight lightest baryons in a hexagonal array with two particles at the centre:

Murry Gell-Mann (1929-2019)

Colloquium @ Deaprtment of Physics at Jazan University

The Baryon Decuplet

The meson octet

- Success of the Eightfold Way begs the question: Why do the hadrons fit into these curious patterns?
- Gell-Mann and Zweig independently proposed that all hadrons are in fact composed of even more elementary constituents, which Gell-Mann called "*quarks*".

Subatomic barren time (1964-1974)

> Why no free quarks observe in nature?

3/29/21

- > Inconsistency with Pauli principle (three identical up quarks are in Δ^{++} etc.)
- ➢ Within few years proton structure discovered at SLAC

Journals 👻	Help/Feedback		Journal, vol, page, DOI, etc.	م 🔻	Log in
	PHYSI(CAL REVIEW LETTERS Recent Accepted Collections Authors Referees Search Press About ର			
	Featured in High-E E. D. Bloo Friedman, Phys. Rev. Physics An article w	Physics PRL Milestone Free to Read Energy Inelastic e - p Scattering at 6° and 10°	(1) (1) (1) (1) (1) (1) (1) (1)		
	Article	References Citing Articles (343) PDF Export Citation ABSTRACT – Issue Cross sections for inelastic scattering of electrons from hydrogen were measured for incident energies from 7 to 17 GeV at scattering angles of 6° to 10° covering a range of squared four-momentum transfers up to 7.4 (GeV/c)². For low center-of-mass energies of the final hadronic system the cross section shows prominent resonances at low momentum transfer and diminishes markedly at higher momentum transfer. For high excitations the cross section shows only a weak	e 23, iss. 16 – 20 October Reuse & Permissions		
		momentum-transfer dependence. Received 19 August 1969 DOI: https://doi.org/10.1103/PhysRevLett.23.930 ©1969 American Physical Society	YSICAL VIEW URNALS		

Subatomic final era (1974-1995)

- In 1964, 0. W. Greenberg proposed a way out of this dilemma: He suggested that quarks not only come in three flavors (u, d, and s) but each of these also comes in three colors ("red," "green," and "blue").
- Since the exclusion principle only apply to the identical particles the problem solved.
- ➢ In 1974 J/Ψ particle discovered at BNL and SLAC by Burton Richter and Samuel C.C. Ting, which is the bound state of "Charm" quarks
- ▶ In 1975 tau lepton was discovered at SLAC by Martin Lewis Perl and his team
- ➤ In 1977 bottom or "beauty" quark was discovered by Leon M Laderman

1/29/21

➢ In 1995 top quark was discovered at Fermilab by CDF and D0 collaboration

Higgs Mechanism

- How the elementary particles acquired masses? Why do they have different masses for different particles?
- ➢ In the 1960s, a group of physicists, including Peter Higgs, worked independently on explaining the above question.
- Peter Higgs idea: all the space in the Universe is uniformly filled with the invisible substance. The invisible substance sort of like molasses, which is also called "The Higgs Field."
- A particle interacts with these molasses and gains mass.
 Different particles have different resistance in molasses and acquired different masses.
- Peter Higgs's first submitted paper on this idea was rejected for publication, but he finally was able to convince the scientific community by providing his beautiful mathematical calculation.

Particle	Mass(GeV)
Photon, gluon	0
Neutrinos	~ 0
Electron	0.0005
Muon	0.105
Tau	1.77
Up quark	0.002
Down quark	0.004
Strange quark	0.100
Charm quark	1.27
Bottom quark	4.18
Top quark	172
W boson	80.3
Z boson	91.2
Higgs	125

Higgs Mechanism

- > The Standard Model is a paradigm of the "Quantum Field Theory".
- The Standard model is described using group theory SU(3)×SU(2)×U(1). SU(3) is the gauge group of the strong interaction and SU(2) x U(1) is the group of electroweak interaction

Symmetry

Higgs Mechanism (Lagrangian)

Lagrangian (an example)

3/29/21

$$\mathcal{L} = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}m\omega^2 x^2$$
$$S = \int_{t_0}^{t_f} \mathcal{L}dt; \,\delta S = 0; \frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{x}} = \frac{\partial \mathcal{L}}{\partial x}; \, m\ddot{x} = -m\omega^2 x$$

Lagrangian (with respect to the field)

$$\phi(x,t) = \phi(x^{\mu})$$

$$\partial_{\nu}\phi \equiv \frac{\partial\phi}{\partial x^{\nu}}; \partial^{\nu}\phi \equiv g^{\nu\mu}\frac{\partial\phi}{\partial x^{\mu}}; S = \int \mathcal{L}(\phi,\partial_{\nu}\phi)d^{4}x$$

$$\partial_{\mu}\left(\frac{\partial\mathcal{L}}{\partial\phi_{\mu}}\right) = \frac{\partial\mathcal{L}}{\partial\phi}$$

$$-E^{2}\phi + p^{2}\phi + m^{2}\phi = 0$$

Fields

- a) Fermion field (spin ¹/₂ particles)
- b) Vector field (spin 1 particles (vector bosons))
- c) Scalar field (spin zero boson)

Standard Model (Lagrangian)

 $-W^{-}_{\mu}\phi^{+})+$ ++ $\left[\frac{2M^2}{g^2}\right]$ $^{\prime -}_{\mu}(H\partial_{\mu}\phi^{+})$ $\frac{g}{2}\frac{m_{\kappa}^{\delta}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + i\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda})] + \frac{ig}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) +$ $\frac{1}{2}\partial_{\mu}H\partial_{\mu}H$ $\bar{X}^0 X^+ \phi^ ^{2}H^{2}$ - $m^\kappa_u (ec{d}^\lambda_j C^\dagger_{\lambda\kappa}(1$ $X^0(\partial^2$ $\gamma^{\mu}(1+\gamma^5)e^{\lambda})$ $(d^{\kappa}_{j}C^{\dagger}_{\lambda\kappa}\gamma^{\mu}(1$ $l_0\phi$ S_w^2 0 n_i^{\prime} $-\partial_{\mu}\phi^{+})$ $rac{1}{3}(ar{d}_j^\lambda \gamma^\mu d_j^\lambda)$ $\phi^{-}\partial_{\mu}\phi^{0})$ $(-1)Z^0_\mu A_\mu \phi^+$ $\phi^{-+A} H \phi^{0} \phi^{0} + 2H \phi^{+} \phi^{-1}$ $+ 2\phi^+\phi^ M_{+\prime}^{\dagger}$ $\beta_h[$ $^{\prime +}_{\mu}\partial_{\nu}W_{\mu}$ $+ \frac{1}{2}g^2 s_w A_\mu \phi^0 (W^+_\mu \phi)$ $\frac{1}{2}g^2\frac{s_w^2}{c_w}Z^0_{\mu}\phi^0(W^+_{\mu}$ $\gamma^5)e^{\lambda}) + \phi^-(\bar{e}^{\lambda}(1+\gamma^5)\nu^{\lambda})]$ -X-X $\frac{1}{4}g_s^2 f^{abc} f^{ade} g^b_\mu g^c_\nu g^d_\mu g^e_\nu +$ $\frac{ig}{2}\frac{m_u^\lambda}{M}\phi^0(\bar{u}_j^\lambda\gamma^5 u_j^\lambda)$ $W_{u}\theta_{\mu}W$ $+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})$ m''_n -M- $[H_0X]$ 9 $igc_w[\partial_\nu Z^0_\mu(W_\mu)$ $W_{\nu}\theta_{\nu}W$ $rac{1}{2c_w^2}M\phi^0\phi^0$ - $+ \rho \lambda$ (\bar{u}_{i}^{λ}) M $-\phi_+$ 0 $M^2)X^ A_{\nu}(W)$ n $_{\mu}\bar{X}^{+}X^{0}$)+ $igs_{w}W_{\mu}$ 0 M_{+} MO. $\partial_{\nu}W$ $[H^{2} + (\phi^{0})^{2}]$ 0 $\frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}$ $Z^0_{\mu}(W_{\nu})$ $Z^0_\mu Z^0_\mu$ $\gamma^5)\nu^{\lambda}) +$ $+ igs_w W$ $+\phi$ μ $+\frac{2cw}{2}uy\dots^{1}$ $\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig\frac{s_{w}^{2}}{c_{w}}MZ^{0}_{\mu}(W_{\mu})$ Cw $q^2 W^ [m_d^\lambda(\bar{d}_j^\lambda C^\dagger_{\lambda\kappa}(1+\gamma^5)u_j^\kappa)$ $\phi^{-}\partial_{\mu}H)$ $\frac{-2c_w^2}{c_m}Z^0_\mu(\phi^+\partial_\mu\phi^-)$ $\frac{q}{\sqrt{2}}W^+_{\mu}[(\bar{\nu}^{\lambda}$ lgs_{w} $(2c_{w}^{2})$ $^{5})e^{\lambda}$ $rac{1}{2}ig[W^+_\mu(\phi^0\partial_\mu\phi^-$ 'n C2 $\gamma^{\mu}u_{\lambda}^{i}$ $igM[\bar{X}^0X]$ $\bar{G}^a\partial^2 G^a + g_s f^{abc}\partial_\mu \bar{G}^a G^b g^c_\mu$ $g^{2\frac{sw}{sw}}$ M^2) $X^+ + \bar{X}^-(\partial^2$ H Ц $\frac{2}{3}(\bar{u}_j^{\lambda},$ $\frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0}$ - $\frac{g}{2}\frac{m_d^\lambda}{M}H(\bar{d}_j^\lambda d_j^\lambda) +$ $\gamma \partial \nu'$ $+ g^{2}$ $\frac{^{vg}}{^4g} \frac{2c_w}{^2W^+W^-}$ $\gamma^5)C_{\lambda\kappa}d_j^{\kappa}] + rac{ig}{2\sqrt{2}}W^-_{\mu}[(\bar{e}^{\lambda}\gamma^{\mu}(1+$ 60 $(+\phi_{-})^{-}$ $\frac{2M}{g}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{a^2}\alpha_h$ $(1)^2\phi^+\phi^ M_n^a Z_n^{\dagger}$ $\frac{2}{2}$ $\partial_{\nu}W_{n}^{+})]$ X $-\partial_{\nu}W_{..}$ $-X_0 X$ $\frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^-)$ X $\phi^+ \partial_\mu \phi^0)] + \frac{1}{2}g[W^+_\mu(H\partial_\mu \phi^-$ - Ūλ, $g\alpha[H^3$. M -- $\gamma^5 (d_i^\lambda)] +$ $- \frac{1}{2c_w^2} M^2 Z_\mu^0 Z_\mu^0 (+\phi$ -0 h $\gamma^{\mu}e^{\lambda}$ $(+ \gamma^5)\nu^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s_w^2))$ $\partial_{\mu}X$ ∂_{μ} h $-M_{\nu}^{+}$ M W Ľ $g_s f^{abc} \partial_\mu g^a_\nu g^b_\mu g^c_\nu$ $-ig^{\frac{1}{2}}$ + M Z⁰ $\bar{e}^{\lambda}(\gamma\partial + m_e^{\lambda})e$ $rac{ig}{2\sqrt{2}}rac{m_e^\lambda}{M}[-\phi^+(ar{
u}^\lambda(1 X_0 X^{\eta}$ -W M_{+} - W $\frac{1}{2}gM[\bar{X}^+X^+H$ $rac{1}{2}grac{M}{c_w^2}Z^0_{\mu}Z^0_{\mu}H$ $\overline{Y} - X^0$ $A_{\mu}A_{\mu}W_{\mu}$ (\bar{e}^{λ}) $-\phi_+X_0\bar{X}$ $\frac{1}{c_w^2} Z_\mu^0 Z_\mu^0 [H^2 + (\phi^0)^2 + 2(2s_w^2)$ $-\phi_0 X - X$ μ $+ g^2 c_w^2 ($ $\frac{1}{2}ig^2\frac{s^2}{c_w}Z^0_{\mu}H(W^+_{\mu}\phi^ -W^{+}_{\mu}\phi^{+}$ $-M^2\phi^+\phi^$ $m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1+\gamma^5)d_j^{\kappa}]+rac{ig}{2M\sqrt{2}}\phi^{-1}$ $ig_{sw}[\partial_{\nu}A_{\mu}(W)]$ Δ $\phi^{-}\partial_{\mu}\phi^{+})$ $Z^0_\nu (W^+_\mu \partial_\nu W_\mu)$ M_{+} $+\frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-}$ $\frac{8}{3}s_w^2$ T $\frac{ig}{2}\frac{m_d^{\lambda}}{M}\phi^0(\bar{d}_j^{\lambda}\gamma^5 d_j^{\lambda}) + \overline{X}^+(\partial^2 - \frac{M^2}{c^2})X^0 + \overline{Y}\partial^2Y + igc_w W^+_{\mu}(\partial_j^{\lambda})$ $+ igs_w A_\mu[$ $rac{g}{2}rac{m_u^\lambda}{M}H(\bar{u}_j^\lambda u_j^\lambda)$ $+\partial_{\nu}W$ 1 $rac{1}{2}\partial_{
u}Z^0_{\mu}\partial_{
u}Z^0_{\mu}$ $-(\partial_{\mu})$ $2A_{\mu}Z_{\mu}^{0}W$ 0" $-M^+$ $A_{\mu}(W_{\nu}^{+})$ H $+ (\bar{d}_i^{\lambda} \gamma^{\mu} (1$ $+\phi$ $+ igc_w Z_u^0$ $-\partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-}$ $A_{\nu}W_{\nu}$ $+ igc_w W$ $+\phi_0 X + \bar{X}_0 \phi_+$ $-\phi_+$ $\frac{1}{2}\partial_{\nu}g^a_{\mu}\partial_{\nu}g^a_{\mu}$ $rac{1}{2}ig_s^2(ar{q}_i^\sigma\gamma^\mu q_j^\sigma)g_\mu^a$ $\frac{\frac{1-2c_w}{2c_w} g_{M}}{igMs_w [\bar{X}^0 X^-]}$ $gMW^+_{\mu}W^-_{\mu}H$ - $A_{\mu}A_{\mu}\phi^+\phi^-$ 2 $igs_{w}MA_{\mu}(W^{+}_{\mu})$ $d_i^{\lambda}(\gamma\partial + m_d^{\lambda})d_j^{\lambda}$ $\frac{ig}{c_m} Z^0_{\mu} [(\bar{\nu}^{\lambda} \gamma^{\mu} (1$ $igs_{w}A_{\mu}(\phi^{+}\partial_{\mu}\phi)$ r $\gamma^5(u_i^{\lambda})] +$ $g^2 s_w^2 (A_\mu W_\mu^+ W_\mu^-)$ M_{+} $^{+}\mu^{+}(\phi_{0}\partial_{\mu}\phi_{+})$ (_η $M^2 W^+_\mu W^-_\mu$ $\bar{u}_j^{\lambda} \gamma^{\mu} (1 +$ M^+ $\gamma^5)u_j^\kappa]$. $\frac{-2c^2}{2}igM[$ $W_{\nu}^{-}\partial_{\nu}W_{\mu}$ $\gamma^5)u_j^{\lambda})$ T W_{μ}^{+} $\partial_{\mu} \bar{X}$ $W^-_{\mu}\partial_{\nu}W^-_{\mu}$ $\partial_{\mu} \bar{X}^+ Y$ $\partial_{\mu}\bar{Y}X^{+})$ ϕ^+ $\frac{1}{2}m_{h}^{2}H^{2}-$ 11 M $(+\phi_{-}^{+}\phi_{+})$ $g^{1}s_{w}^{2}$ \overline{M} Ц $\frac{1}{4}g^2 \frac{1}{c}$ M $4c_w$ 9 M S S 3

Standard Model (Lagrangian) Fru F Bu Mass = IMAGINARY Mass = REAL Mass = ZERO 4 h.c. -+ i Z $V(\phi) = - \mid \mu^2 \mid \mid \phi \mid^2 + \lambda(\mid \phi \mid^2)^2$ V (ø) $Im(\phi)$ Re(¢)

Colloquium @ Deaprtment of Physics at Jazan University

Higgs Boson

To observe the Higgs field, we must produce its quantum particle, the Higgs Boson, as like as a photon in the electromagnetic field

July 2012 @ ATLAS and CMS at the Large Hardon Collider

Beyond Standard Model

Colloquium @ Deaprtment of Physics at Jazan University

Dark matter Search

□ Satellite base

AMS-02 on International Space Station (Oct.2003)

Main Components of AMS-02 Detector

Ground base

3/29/21

BABAR

Dark matter Search

□ Underground base

3/29/21

Dark matter Search

• The known particles and interactions in the SM are insufficient to explain dark matter.

• Many theoretical predictions and astronomical observations suggest dark sector – feebly coupled to the SM.

• Beyond Standard Model (BSM) scenario with new gauge bosons (dark photon (A')/boson(Z')) which are the mediators of the new U(1)' interactions.

$$e^+e^- \rightarrow \gamma A', A' \rightarrow e^+e^-, \mu^+\mu^-$$

• 20 MeV to 10.2 GeV

• BABAR full dataset: 514 fb⁻¹ (~ 514, 000000 events)

Dark matter Search

No significant signal (A' →visible particles)
PRL 113 201801 (2014)

3/29/21

Belle II experiment at KEK

ST. FRANCIS XAVIER ACADEMICS WHY STFX ADMISSIONS STUDENT LIFE UNIVERSITY RESEARCH INTERNATIONAL COADY INSTITUTE ALUMNI

Home > About StFX > News >

3/29/21

StFX voted new member of Belle II collaboration; providing opportunity to work on potentially Nobel Prize winning research

STFX VOTED NEW MEMBER OF BELLE II COLLABORATION; PROVIDING OPPORTUNITY TO WORK ON POTENTIALLY NOBEL PRIZE WINNING RESEARCH

June 26th, 2019

L-r, Noah Tessema, Dr. Peter Marzlin, Dr. Hossain Ahmed and Patrick O'Brien

Acknowledgement

3/29/21

NSERC CRSNG

INNOVATION.CA

CANADA FOUNDATION FOR INNOVATION

FONDATION CANADIENNE POUR L'INNOVATION

