EPS-HEP2023 conference, August 20-25, 2023 University of Hamburg

Recent Dark Matter related searches with the *BABAR* **detector**

Hossain Ahmed

hahmed@stfx.ca

On behalf of the BaBar Collaboration

Recent Dark Matter related searches with the *BABAR* **detector**

Paper one: Baryogenesis and Dark Matter \checkmark Search for Baryogenesis and Dark Matter in $B^+ \rightarrow \psi_D + p$ Decays at BABAR arXiv:2306.08490v3 (First presented at Moriond EW 2023), submitted to PRL

> Paper two: Mesogenesis ✓ Search for B mesogenesis at BABAR Phys. Rev. D 107, 092001 (May 2023)

Motivations

- Existence of Dark Matter (DM) is evident from astrophysical observations
- Understanding the mass scale and nature of DM leads to new physics beyond the standard model (BSM)
- Understanding the baryon asymmetry of the universe (BAU) is also a pressing issue in modern particle physics
- A new mechanism has been proposed to simultaneously explain the DM abundance and the BAU arising from B-meson oscillation that could be testable in B-factories
- Contrary to typical baryogenesis scenarios, B-Mesogenesis operates at very low temperatures

Theoretical Background

Signal B-tagging

- Schematic view of the geometry in the yz plane for a $\Upsilon(4S) \rightarrow B\overline{B}$ decay
- The goal of B-flavor tagging is to determine the flavor of a B meson (i.e. whether it contains a b or a \overline{b} quark) at the time of its decay

BaBar Detector

Analysis Details

MC

inclusive e⁺e⁻ → B B̄ (EVTGEN)
 continuum e⁺e⁻ → q q̄ (JETSET)

\overline{B}_{sig} \rightarrow dark sector baryon+ anti - proton also used in this analysis

- $B^+ \rightarrow \psi_D + p$ decays are selected in events in which a hadronic decay of the B^- meson is fully reconstructed
- The ψ_D is identified as the system recoiling against the B_{tag} and p candidates
- $B \rightarrow \psi_D \mathcal{B}$ decay can occur only if $m_{\psi_D} < m_B m_p$
- Proton stability requires: $m_{\psi_D} > m_p m_e$
- Samples were made for eight different ψ_D mass hypotheses: 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 and 4.2 GeV/ c^2

EPS-HEP2023

Baryogenesis and Dark Matter $B^+ \rightarrow \psi_D + p$ (reconstruction)

	B _{tag} side	<i>B_{sig}</i> side
•	B_{tag} meson decay kinematics: a) energy substituted mass m_{ES} and b) energy difference ΔE $m_{ES}c^2 = \sqrt{E^{*2}}_{beam} - \vec{p}^{*2}_{B_{tag}}c^2$; where $m_{ES} \sim 5.27 - 5.29 \frac{GeV}{c^2}$ $\Delta E = E^*_{beam} - E^*_{B_{tag}}$ (lowest ΔE if multiple B_{tag} candidates); $E^*_{B_{tag}}$ must be within ± 0.2 GeV of the beam energy $E^*_{beam} = \frac{\sqrt{s}}{2}$ in the CM frame	 One and only one track is required (proton hypothesis) Multivariate classifier based on a boosted decision tree (BDT) that includes: kinematic variables from B_{tag} (ΔE & m_{ES}): information about the hadronic decay channel and its purity magnitude of the thrust vector features from the B_{sig}: the total extra neutral energy on the signal side in the CM frame the cosine of the polar angle of the missing momentum vector number of neutral particles and the number of π⁰ candidates
	2023-08-22 EPS-HEP20	9

Baryogenesis and Dark Matter $B^+ \rightarrow \psi_D + p$ (reconstruction)

EPS-HEP2023

FIG. 2. The energy-substituted mass ($m_{\rm ES}$) of the $B_{\rm tag}$ candidate for MC background processes and data.

FIG. 3. Simulated distributions of the ratio of the second-tozeroth Fox-Wolfram moment for all tracks (denoted as R_2).

2023-08-22

Baryogenesis and Dark Matter $B^+ \rightarrow \psi_D + p$ (missing-mass)

> 127 mass hypotheses were considered in the range $1.0 < m_{miss} < 4.29 \frac{GeV}{c^2}$

Baryogenesis and Dark Matter $B^+ \rightarrow \psi_D + p$ (upper limits on BF)

- ▷ In a similar procedure as the previous analysis, the ψ_D is identified as the system recoiling against the B_{tag} and A candidates
- $> B_{tag}$ candidate selections are based on two kinematic variables; $\Delta E \& m_{ES}$
- $\succ B_{sig} \approx \Lambda \psi_D; \Lambda \approx p\pi$
- Multivariate classifier based on a boosted decision tree (BDT) is used to further increase the signal purity.

EPS-HEP2023

Mesogenesis $B^0 \rightarrow \psi_D + \Lambda$ (reconstruction)

PHYS. REV. D 107, 092001 (2023)

- If more than one combination of Λ candidates • is found, the one with the smallest χ^2 from the kinematic fit is selected
- After reconstructing the B_{tag} and Λ • candidates, no additional track must be present in the event
- $5.27 < m_{ES} < 5.29 \ rac{GeV}{c^2}$ $1.110 < m_A < 1.121 \ rac{GeV}{c^2}$

Mesogenesis $B^0 \rightarrow \psi_D + \Lambda \text{ (reconstruction)}$

PHYS. REV. D 107, 092001 (2023)

 \succ The distribution of the BDT score

> The distribution of the ψ_D mass (m_{ψ_D}) after applying all selection criteria

Mesogenesis $B^0 \rightarrow \psi_D + \Lambda$ (upper limit on BF)

Summary

- BABAR has made a significant contribution on searches for Physics Beyond the Standard Model, and Dark Sector in particular
- $B^+ \rightarrow \psi_D + p$ is the first attempt to directly search for this channel. No signal is observed and 90% C.L upper limits from $10^{-7} 10^{-5}$ are set on the branching fraction
- We also report a search for baryogenesis and dark matter in the process $B^0 \rightarrow \psi_D + \Lambda$ with a fully reconstructed B_{tag} meson
- No significant signal is observed, and upper limits on the branching fraction at the level of $10^{-6} 10^{-5}$ are set
- These results exclude a large fraction of the parameter space allowed by B mesogenesis
- Future measurements at Belle-II should be able to fully explore the remaining region

Back-up Slide -- one

TABLE I. Summary of the additional fields (in both the UV and the effective theory), their charges, and properties required in our model.

Field	Spin	$Q_{ m EM}$	Baryon no.	\mathbb{Z}_2	Mass
Φ	0	0	0	+1	11–100 GeV
Y	0	-1/3	-2/3	+1	$\mathcal{O}(\mathrm{TeV})$
Ψ	1/2	0	-1	+1	$\mathcal{O}(\text{GeV})$
ξ	1/2	0	0	-1	$\mathcal{O}(\text{GeV})$
ϕ	0	0	-1	-1	$\mathcal{O}(\text{GeV})$

For the decay $B \rightarrow \psi_D \mathcal{BM}$ to exist:

- a) a new BSM TeV-scale bosonic mediator Y is needed
- b) Y is a color-triplet scalar couples to dark sector antibaryon and SM quarks
- c) The couple depends on a low energy Lagrangian with an effective operator $\mathcal{O}_{i,j}: \mathcal{L}_{eff} = \sum_{i,j} \mathcal{O}_{u_i d_j} \frac{y_{ij}^2}{M_Y^2}$ where y_{ij}^2 being the product of the two relevant dimensionless couplings, e.g.,

$$\mathcal{O}_{ud} = \psi_D bud; \mathcal{O}_{us} = \psi_D bus; \mathcal{O}_{cd} = \psi_D bcd; \mathcal{O}_{cs} = \psi_D bcs$$

EPS-HEP2023

Back-up Slide -- two

Baryogenesis and Dark Matter $B^+ \rightarrow \psi_D + p$ (constrain a SUSY model: JHEP 2023 (2)

> Model with: R-parity Violation (RPV) & Light Neutralino $\tilde{\chi}_0$

 \succ Limits on the RPV coupling λ_{123} " divided by the relevant squark mass squared