Instructor Hossain Ahmed

Phone & Email 867-3880 hahmed@stfx.ca Office: NFSC 1009

Lab Instructor Jamie Powell

Phone & Email 867-2302 jpowell@stfx.ca Office: NFSC 1018

Student Hours

10:00 -11:00 am, Monday 11:00 am – 1:00 pm, Tuesday

Class Time & Location

Tuesday: 9:30 – 10:20 am Thursday: 8:30 – 9:20 am Friday: 10:30 – 11:20 am

Location: MULH 2034 (Tuesday and Thursday) KC1018A (Friday)

Labs and Tutorials

Wednesday & Thursday: 2:30 – 5:15pm Labs: PS 1012: starts on January 10, 2024 Tutorials: PS 3046: starts on January 17, 2024

*Labs are in every second week, alternating with tutorials! * Jamie Powell is the primary contact for the Lab Section

Subject Name: Phys 102, Winter 2024 Physics for the Life and Health Sciences II

Course Overview

Physics (PHYS) 102 is an introductory algebra-based course aimed at students in the life and health sciences. This course covered thermodynamics, Oscillation and waves, optics, and an overview of electricity and magnetism. Previous physics experience would be an asset but is not required. This is three credits and a lab course.

The experimental lab is a significant part of this course, and students must attend all the labs and actively perform each experiment. **Jamie Powell** (jpowell@stfx.ca) is the primary contact for the lab section. Lab announcement and lab material will be available on the "Moodle Page" <u>https://moodle.stfx.ca/course/view.php?id=34604</u>. Tutorials are mandatory and take place on the same day of your lab week but the alternate week.

N. B.: I strongly suggest students understand the lab procedure and mark scheme from *Jamie Powell* in the first lab!

Additional Course Information

Class participation, textbook consultation, doing assignments, and participating in-class quizzes are the key to success in this course. Class attendance is strongly recommended, and students are responsible for collecting information from the classes.

Learning Objectives

By the end of this course, students will be able to:

- Explain the phenomenon of thermodynamics, oscillations and waves, and optics.
- Demonstrate electric charge and their influence on electricity and magnetism.
- Be skilled in problem-solving on above mention topics.

Textbook: University Physics - for the life sciences (first edition) by Knight, Jones, and Field

** Textbook is available in the StFX bookstore.

Course webpage: <u>https://moodle.stfx.ca/course/view.php?id=33622</u> Online classroom (if required): <u>https://ca-lti.bbcollab.com/collab/ui/scheduler/session</u>

Mastering Physics: Students are required to have mastering physics (MP) access code for assignments and learning catalytics!

Website: https://mlm.pearson.com/northamerica/masteringphysics/

Register as student The Course ID: ahmed27981 The Course Title: Physics for the Life and Health Sciences II (Phys 102) Book: University Physics – for the Life Sciences (first edition(1e))

Register as soon as possible. The first assignment will be given in the second week of classes!

Continuing Students: For any troubles with MP access, contact **Jeremy Guimond** directly at (Jeremy.Guimond@PearsonEd.com). Do not buy the new code!

** New students must buy the book and MP code!

Course Evaluation

Class attendance is highly recommended, and students are responsible for collecting information from the classes. The mark scheme will be:

Category	Marks
In-class activities (learning catalytics, tutorial attendance etc.)	5%
Assignments (5)	15%
Quizzes (3)	12%
Labs	15%
Midterm	15%
Final	38%
Total	100%

Lab Grading Policy:

If you fail to provide complete lab notebook work for any one experiment, your lab grade will be reduced by 20 percentage points.

If you fail to provide complete lab notebook work for any two experiments, you will receive a zero for the lab portion of the course, regardless of your performance on other experiments, or lab exam.

If you fail to provide complete lab notebook work for any three or more experiments, you will receive a zero for the lab grade, and your mark for the entire course will not be more than 49/100, regardless of your performance on assignments, midterms and exams.

There are five assignments and three in-class quizzes throughout the semester. Solving assignments and questions in tutorials and quizzes will significantly help you succeed in the course. Discussion with other students on assignment questions is always welcomed but make sure you can do the problems yourself as all in-class exams are closed books, and you will be working on exams yourself. Late submission without a valid reason will affect your grade!

	Assignment	Assignment	
	Handing out	Due	Quiz
01	Jan. 17	Jan. 25	
02	Jan. 31	Feb. 08	Feb. 09
03	Feb. 28	Mar. 07	Mar. 15
04	Mar. 13	Mar. 21	Apr. 05
05	Mar. 27	Apr. 04	

Exams

Quizzes: In class Midterm: 16 February 2023 (Friday) [Time: 10:30 am – 11:20 am] Lab exam: TBA Final: The final exam date will be set by the University registrar.

Course Contents

Note: Due to COVID and future unseeable circumstances, we might not have enough time to finish all the chapters. In this scenario, we will discard the last few chapters in Magnetism!

Chapter 12 Thermodynamics

- 12.1 Heat and the First Law of Thermodynamics
- 12.2 Thermal Expansion
- 12.3 Specific Heat and Heat of Transformation
- 12.4 Calorimetry
- 12.5 Heat Transfer
- 12.6 The Ideal Gas: A model System
- 12.7 Thermodynamics of Ideal Gases
- 12.8 Enthalpy

Chapter 13 Kinetic Theory

- 13.1 Connecting the Microscopic and the Macroscopic
- 13.2 Molecular Speeds and Collisions
- 13.3 The Kinetic Theory of Gases
- 13.4 Thermal Energy and Specific Heat
- 13.5 k_BT and the Boltzmann Factor
- 13.6 Reaction Kinetics and Catalysis
- 13.7 Diffusion

Chapter 14 Entropy and Free Energy

- 14.1 Reversible and Irreversible Processes
- 14.2 Microstates, Multiplicity, and Entropy
- 14.3 Using Entropy
- 14.4 Spontaneity and Gibbs Free Energy
- 14.5 Doing Useful Work
- 14.6 Using Gibbs Free Energy
- 14.7 Mixing and Osmosis
- Chapter 15 Oscillations
 - 15.1 Simple Harmonic Motion
 - 15.2 SHM and Circular Motion
 - 15.3 Energy in SHM
 - 15.4 Linear Restoring Force

	15.5	The Pendulum
	15.6	Damped Oscillation
	15.7	Driven Oscillations and Resonance
Chapter 16	Travelling Waves and Sound	
	16.1	An introduction to Waves
	16.2	Visualizing Wave Motion
	16.3	Sinusoidal Waves
	16.4	Sound and Light
	16.5	Circular and Spherical Waves
	16.6	Power, Intensity, and Decibels
	16.7	The Doppler Effect
Chapter 17	Superr	position and Standing Wayes
Chapter 17	17 1	The Principle of Superposition
	17.2	Standing Waves
	17.2	Standing Waves on a String
	17.5	Standing Sound Waves
	17.4	The Physics of Speech
	17.5	Interference Along a Line
	17.0	Interference and Two and Three Dimensions
	17.8	Beats
Chapter 18	Wave	Optics
	18.1	Models of Light
	18.2	Thin-Film Interference
	18.3	Double-Slit Interference
	18.4	The Diffraction Grating
	18.5	Single-Slit Diffraction
	18.6	Circular Aperture Diffraction
	18.7	X Rays and X-Ray Diffraction
Chapter 19	Ray O	ptics
	18.1	The Camera
	18.2	The Human Eye and Magnifier
	18.3	The Microscope and Telescope
	18.4	Color and Dispersion
	18.5	Resolution of Optical Instruments
Chapter 20	Optica	l Instruments
-	20.1	Lenses in Combination
	20.2	The Camera
	20.3	The Human Eye
	20.4	Magnifiers and Microscopes
	20.5	The Resolution of Optical Instruments
	20.6	Microscopy

Chapter 21	 Electric Forces and Fields 21.1 The Charge Model 21.2 A Microscopic Model of Charge 21.3 Coulomb's Law 21.4 The Electric Field 21.5 The Electric Field of Multiple Charges 21.6 The Motion of a Charged Particle in an Electric Field 21.7 The Torque on a Dipole in an Electric Field
Chapter 22	 Electric Potential 22.1 Electric Potential Energy 22.2 The Electric Potential 22.3 Calculating the Electric Potential 22.4 The Potential of a Continuous Distribution of Charge 22.5 Source of Electric Potential 22.6 Connecting Potential and Field 22.7 The Electrocardiogram
Chapter 23	 Biological Applications of Electric Fields and Potentials 23.1 Capacitance and Capacitors 23.2 Combinations of Capacitors 23.3 Dielectrics 23.4 Electrostatics in Salt Water 23.5 The Membrane Potential of a Cell
Chapter 24	Current and Resistance24.1A Model of Current24.2Defining Current24.3Batteries and emf24.4Resistance and Conductance24.5Ohm's Law and Resistor Circuits24.6Energy and Power24.7Alternating Current
Chapter 25	Circuits25.1Circuit Elements and Diagrams25.2Using Kirchhoff's Laws25.3Series and Parallel Circuits25.4Measuring Voltage and Current25.5More Complex Circuits25.6Electric Safety25.7RC Circuits25.8Electricity in the Nervous System

Magne	Magnetic Fields and Forces			
26.1	Magnetism			
26.2	The Magnetic Field of a Current			
26.3	Magnetic Dipoles			
26.4	The Magnetic Force on a Moving Charge			
26.5	Magnetic Forces on Current Carrying Wires			
26.6	Forces and Torques on Magnetic Dipoles			
26.7	Magnetic Resonance Imaging			
Magne	Agnetic Fields and Forces			
27.1	Induced Current			
27.2	Motional emf			
27.3	Magnetic Flux and Lenz's Law			
27.4	Faraday's Law			
27.5	Induced Fields			
27.6	Electromagnetic Waves			
27.7	Polarization			
	Magne 26.1 26.2 26.3 26.4 26.5 26.6 26.7 Magne 27.1 27.2 27.3 27.4 27.5 27.6 27.7			

Academic Integrity

The university has a strict policy against academic dishonesty. For a precise definition of what St. Francis Xavier University considers to be academic dishonesty, please refer to <u>https://www.stfx.ca/applications-admissions/registrars-office/academic-integrity</u>. It is your responsibility to know what constitutes academic dishonesty.