#ifndef BINOMIAL_QUEUE_H #define BINOMIAL_QUEUE_H #include #include #include "dsexceptions.h" using namespace std; // Binomial queue class // // CONSTRUCTION: with no parameters // // ******************PUBLIC OPERATIONS********************* // void insert( x ) --> Insert x // deleteMin( ) --> Return and remove smallest item // Comparable findMin( ) --> Return smallest item // bool isEmpty( ) --> Return true if empty; else false // void makeEmpty( ) --> Remove all items // void merge( rhs ) --> Absorb rhs into this heap // template class BinomialQueue { public: BinomialQueue( ) : theTrees( DEFAULT_TREES ) { for( auto & root : theTrees ) root = nullptr; currentSize = 0; } BinomialQueue( const Comparable & item ) : theTrees( 1 ), currentSize{ 1 } { theTrees[ 0 ] = new BinomialNode{ item, nullptr, nullptr }; } BinomialQueue( const BinomialQueue & rhs ) : theTrees( rhs.theTrees.size( ) ),currentSize{ rhs.currentSize } { for( int i = 0; i < rhs.theTrees.size( ); ++i ) theTrees[ i ] = clone( rhs.theTrees[ i ] ); } ~BinomialQueue( ) { makeEmpty( ); } /** * Deep copy. */ BinomialQueue & operator=( const BinomialQueue & rhs ) { BinomialQueue copy = rhs; std::swap( *this, copy ); return *this; } /** * Return true if empty; false otherwise. */ bool isEmpty( ) const { return currentSize == 0; } /** * Returns minimum item. */ const Comparable & findMin( ) const { } /** * Insert item x into the priority queue; allows duplicates. */ void insert( const Comparable & x ) { } /** * Remove the smallest item from the priority queue. */ void deleteMin( ) { } /** * Remove the minimum item and place it in minItem. * Throws UnderflowException if empty. */ void deleteMin( Comparable & minItem ) { } /** * Make the priority queue logically empty. */ void makeEmpty( ) { } /** * Merge rhs into the priority queue. * rhs becomes empty. rhs must be different from this. * Exercise 6.35 needed to make this operation more efficient. */ void merge( BinomialQueue & rhs ) { } private: struct BinomialNode { Comparable element; BinomialNode *leftChild; BinomialNode *nextSibling; BinomialNode( const Comparable & e, BinomialNode *lt, BinomialNode *rt ) : element{ e }, leftChild{ lt }, nextSibling{ rt } { } BinomialNode( Comparable && e, BinomialNode *lt, BinomialNode *rt ) : element{ std::move( e ) }, leftChild{ lt }, nextSibling{ rt } { } }; const static int DEFAULT_TREES = 1; vector theTrees; // An array of tree roots int currentSize; // Number of items in the priority queue /** * Find index of tree containing the smallest item in the priority queue. * The priority queue must not be empty. * Return the index of tree containing the smallest item. */ int findMinIndex( ) const { } /** * Return the capacity. */ int capacity( ) const { return ( 1 << theTrees.size( ) ) - 1; } /** * Return the result of merging equal-sized t1 and t2. */ BinomialNode * combineTrees( BinomialNode *t1, BinomialNode *t2 ) { } /** * Make a binomial tree logically empty, and free memory. */ void makeEmpty( BinomialNode * & t ) { if( t != nullptr ) { makeEmpty( t->leftChild ); makeEmpty( t->nextSibling ); delete t; t = nullptr; } } /** * Internal method to clone subtree. */ BinomialNode * clone( BinomialNode * t ) const { if( t == nullptr ) return nullptr; else return new BinomialNode{ t->element, clone( t->leftChild ), clone( t->nextSibling ) }; } }; #endif