A Method for the Shortest Path Search by
Extended Dijkstra Algorithm

Masato Noto
Kanagawa University
Yokohama, Japan 221-8686

Abstract

The Dijkstra method is a well-known algorithm for
finding the optimum path in shortest path search
problems. With that method, however, the time re-
quired to find the optimum path becomes remarkably
long when the search scope is broad, so the Djikstra
method is not suitable for real-time problems. In this
paper, we propose a method for obtaining, in a short
time, a path that is as close as possible to the path
obtained by the Dijkstra method (the optimum path).
The new method extends the conventional Dijkstra
method so as to obtain a solution to a problem given
within a specified time, such as path search in a car
navigation system. The effectiveness of that extended
method is described through use of simulations.

‘1 Introduction’

The path search problem involves finding the optimum
path between the present location and the destina-
tion under given conditions. Currently, these prob-
lems arise in networks such as the highway system,
railroads, and communication networks, and cover a
" wide range of applications. In particular, car naviga-
tion systems have exhibited explosive growth in pop-
ularity due to recent advances in science and technol-
ogy. The actual route found in car navigation is not
necessarily the optimum solution because of hardware
restrictions and the calculation time required for the
path search. A number of path search methods have
been proposed for use in car navigation systems, but
while all of those methods have their respective merits
and demerits, no exceptionally good method has yet
been established. In this paper, we propose a method
of path search that is based on the Dijkstra method,

0-7803-6583-6/00/$10.00 © 2000 IEEE

Hiroaki Sato
Fujitsu Program Laboratories
Yokohama, Japan 222-0033

which can obtain the optimum solution, but extends
that method so as to obtain a path that is as close as
possible to the optimum solution in a shorter time.

This paper organized as follows.

In section 2, we introduce the main algorithms that
are employed for the shortest path search problem.
In section 3, we propose a new algorithm obtained by
extending the Dijkstra method, which is capable of
yielding the shortest path, and present the results of
comparative experiments to discuss the effectiveness
of the proposed method.

In section 4, we identify problems and issues to be ad-
dressed in future work to further improve the extended
algorithm and summarize our work.

2 Shortest Path Search

2.1 Features of Various Path Search
Methods

Here, we describe the respective features of the Di-
jkstra method, the A* algorithm, and genetic algo-
rithms, which are the main types of algorithms that
are currently being used or studied for use in path
search problems. '

o The Dijkstra method (1]

This is an algorithm for finding the optimum
path. Because this algorithm searches for the
minimum-cost path among all paths in order, be-
ginning from the starting point, the search region
expands concentrically. This method thus has the
disadvantages of poor search efficiency and a long

~ search time when the distance to the destination
is large.

2316

Authorized licensed use limited to: Queen's University. Downloaded on August 25,2021 at 12:19:00 UTC from IEEE Xplore. Restrictions apply.



o The A* algorithm

This algorithm is based on the approach of the
Dijkstra method, but eliminates fruitless searches
by considering the distance to the destination.

o Genetic algorithms (2, 3, 4]

These algorithms imitate a number of processes
that are seen in natural evolution. In the case of
path search, a path is selected and regarded as a
gene, and the solution path is obtained by per-
forming calculations that emulate genetic cross-
ing, spontaneous mutations, and so on. The
search time is determined by the number of genes
that are produced, so this method has the advan-
tage of not being affected by the network size. A
problem with this approach, however, is that the
number of generations necessarily becomes large
as the optimum solution is approached.

2.2 Dijkstra Algorithm

In this section, we describe the algorithm of the Dijk-
stra method. First, we consider road intersections as
nodes, the roads that connect nodes as paths (routes),
and the length and ease of transit of a path as the
movement cost (cost), as shown in Fig. 1.

Path

(2)

Path(2)

Path

(5)

(n) means the movement cost

Path (4)

Figure 1: Route diagram

The algorithm is shown below.

Algorithm

2317

Authorized licensed use limited to: Queen's University. Downloaded on August 25,2021 at 12:19:00 UTC from IEEE Xplore. Restrictions apply.

e Step 0: Mark the starting point.

e Step 1: Calculate the movement cost for move-
ment from the starting point to each node con-
nected to the starting point and mark the node
for which that value is the smallest.

e Step 2: Calculate the movement cost for move-
ment between the starting point and each node
connected to the marked node and mark the node
for which that value is the smallest.

e Step 3: Repeat Step 2 until the destination is
marked.

The value obtained here is the minimum cost of move-
ment to the destination. Also, by storing the previous
node in memory when marking a node, it is possible
to obtain the shortest path to the destination.

3 Extended Dijkstra Algorithm

3.1 Basic Algorithm

In the conventional Dijkstra method, the search re-
gion generally expands concentrically, so many nodes
are checked for each search and the search time is long.
Because of that feature, this method has the disadvan-
tage that the solution cannot be obtained in real time
if the distance from the starting point to the destina-
tion is long. Therefore, we propose a new algorithm
in which the Dijkstra method is applied from both di-
rections, which is to say beginning from the starting
point and also beginning from the destination, and
the conventional algorithm is extended so as to make
it possible to obtain a solution. to the given problem
within a specified time. In this way, the concentric
expansion of the search region is restricted and the
number of nodes to be searched can be reduced. (See
Fig. 2.) '

In the following, the new algorithm, which is an ex-
tension of the conventional Dijkstra method, is shown.

Algorithm

e Step 0: Mark the starting point and the destina-
tion.



(- R
Conventional Search scope
Dyjkstra method i
AR TN
Search region g \\
Start oal
_>} ;
Shortest path /
b - _

Figure 2: Comparison of the conventional Dijkstra
method and the extended Dijkstra method

e Step 1: Calculate the movement cost for move-
ment from the starting point to each node con-
nected to the starting point and for movement
from the destination to each node connected to
the destination, and mark the nodes for which
those values.are the smallest.

e Step 2: Mark the nodes that have the smallest
movement cost from the unmarked nodes that are
connected to the marked nodes to either the start-
ing point or the destination.

e Step 3: Repeat Step 2 until the search from the
starting point and the search from the destination
overlap and then end.

When conducting a path search with this extended
algorithm, some time is required if the search scope
becomes too wide, because this algorithm is based on
the Dijkstra method. Therefore, if the search time or

the search scope exceeds a certain value, the search is -

ended at that point, and another approach in which
the remaining search region is approximated and a
genetic algorithm is applied to that region is consid-
ered. Here, due to space restrictions, we report only
the simulated comparison of the conventional Dijkstra
method and the extended Dijkstra method.

3.2 Simulation

We simulated a comparison of the conventional Dijk-
stra method and the extended Dijkstra method pro-
posed here on a Pentium 500MHz (256 Mbyte mem-
ory) computer, compiled with geec. The search times,
numbers of nodes checked, and the mean costs that
were obtained in the simulation as the comparison re-
sults are presented in Table 1.

We created a 2000 x 2000 node grid pattern of paths
to serve as the search region. The path movement
costs were assigned with a uniform random distribu-
tion in five levels, 1 to 5, with the lower movement cost
values representing easier movement. Also, because it
18 possible for the path to be monotonic if the start-
ing point and the destination are on a straight line,
a square 1s constructed at the center of the search re-
gion grid, and opposite corner points of the square
serve as the starting point and the destination (Fig.
3). The distance between the starting point and the
destination can be changed by changing the size of the
square. Under these conditions, 10 simulation runs
were executed with random changes in the movement
cost values for each run. Although 25 paths for which
the distance between the starting point and the desti-
nation ranged from 10 to 450 were actually simulated,
only 17 of those are presented in Table 1.

(1, 1) (2000. 1)

start n

——goal

(1,2000) (2600. 2000)

Figure 3: The search region for the simulation

2318

Authorized licensed use limited to: Queen's University. Downloaded on August 25,2021 at 12:19:00 UTC from IEEE Xplore. Restrictions apply.



Table 1: Simulation results

Conventional Dijkstra method Extended Dijkstra method

Distance  Search time (s) Number of node Mean cost Search time (s) Number of node Mean cost
(timel) (countl) (cost1) (time2) {count2) (cost2)
10 0.03 645 38.1 0.01 305 38.1
20 0.25 2671 74.5 0.05 1252 74.8
30 0.93 6132 110.0 0.18 2929 110.3
40 2.34 11106 147.0 0.44 5289 147.3
50 4.43 16744 178.7 0.84 8079 178.9
60 7.65 23832 211.2 1.46 11518 211.4
70 12.10 32133 244.6 2.31 15528 244.9
80 18.63 42496 280.4 3.50 20348 280.5
90 26.89 54011 316.0 5.11 26022 316.1
100 37.36 66890 350.7 7.18 32455 350.8
150 127.06 148891 521.0 24.82 72558 521.6
200 311.55 267064 694.2 61.18 130238 694.6
250 616.41 415855 863.0 122.62 203524 863.2
300 1087.29 598716 1031.9 218.37 293502 1031.9
350 1771.71 816690 1203.1 358.87 401059 1203.3
400 2692.92 1062340 1370.7 552.75 523268 1370.9
450 3926.72 1344920 1540.2 811.82 663627 1540.4
The s.lmul.at.lon results of Table 1 are shown in graph Table 2: Simulation results
form in Fig. 4. :
Conventional Dijkstra method /
. . Distance Extended Dijkstra method
3.3 Discussion Time (%) Count (%) Cost (%)
. . . . 10 12.82 47.27 100.00
The data in Table 1 is presented in a form that facili- 20 17.58 46.88 99.60
tates comparison of the conventional Dijkstra method 30 18.81 47.77 99.73
and the extended Dijkstra method in Table 2. 40 18.69 47.63 99.80
50 19.00 48.25 99.89
First, we consider the search time (the “Time” in the 60 19.02 48.33 99.91
table). With the extended Dijkstra method, the num- . 70 19.06 48.32 99.86
ber of nodes checked (the “Count” in the table) is 58;8 ig(‘)g :é?g gggg
reduced by about one-half compared to the conven- 100 19:21 48:52 99:97
tional Dijkstra method. By reducing the number of 150 19.54 48.73 99.88
nodes checked, the search time was shortened to about 200 19.64 48.77 99.94
1/5 the original time. Next, we consider the move- 250 19.89 48.94 99.98
’ ’ e 300 20.08 49.02 100.00
ment cost (the “Cost” in the table). The conventional 350 20.26 49.11 99.98
Dijkstra method necessarily gives both the optimum 400 20.53 49.26 99.99
450 20.67 49.34 99.99

solution and the minimum movement cost. With the
extended Dijkstra method, in all of the simulations, a
difference in movement cost between the conventional
Dijkstra method and the extended Dijkstra method
was seen in 44 of the 250 runs with a probability of
about 18%. However, as can be seen by comparing
the “Mean cost” columns of Table 1, even when the

4 Conclusion

We have proposed a shortest path search method that
is an extension of the conventional method (the Dijk-

cost difference appears, value of the difference in move-
ment cost is only about 1 or 2, so we know that a
near-optimum solution is obtained.

stra method) and confirmed its effectiveness by means
of simulation. The results show that the search time
can be greatly reduced without such a large affect on

2319

Authorized licensed use limited to: Queen's University. Downloaded on August 25,2021 at 12:19:00 UTC from IEEE Xplore. Restrictions apply.



Compar ison of the Dijkstra method and the extended Di jkstra method

FEONNNN) oo rm e i me o e e e
1600000

1400000

4 6000

/‘ 5220

1200000

/ anze

1C00000

/

€00000

/ﬂme‘l 1 ava

Nodes investigated

600000

Search time (s)

Tountt / 7
P
e 2000
/ _~tount2
: s

400000

200000

/1 1020

7 lewsse _ e

A\ O O a0 8 0 (8 0 40 80 a0 0 0000 8 80 L0 .0 O
PESPPILLPE TP FEFFT PP L PSP SO

Distance (Starting poing-destination)

Figure 4: The simulation results in graph form

the movement cost, so that a near-optimum solution

can be obtained rapidly. The new method can thus
be applied to car navigation systems and other such
path search problems that require a real-time solu-
tion. Nevertheless, although the new method allows
for a faster solution than does the conventional Di-
jkstra method, this method is based on the Dijkstra
method, and so problem of long search time remains
for problems that have a broad search scope. As can
be seen from Table 1, a 200 x 200 search takes about
one minute, so practical use is probably limited to
problems of this scope. As an issues to be addressed
in future work, because genetic algorithms are an ef-
fective means of obtaining solutions rapidly, we can
expect to achieve an even more effective method by
improving and extending the method reported here
by simulating use together with a genetic algorithm
and comparison with conventional genetic algorithms.
It is also necessary to conduct simulations in which
the results of this work are applied to actual maps.

Acknowledgments

This work is partially supported by the Grant-in-Aid
for Encouragement of Young Scientists: No. 12780246
for the first author.

References

(1] J. A. Bondy and U. S. R. Murty, Graph Theory
with Applications, Elsevier North—Holland, 1976.

[2) L. Davis, Handbook of Genetic Algorithms, Van
Nostrand Reinhold, 1991.

“[3] D. E. Goldberg, Genectic Algorithms in Search,
Optimization, and Meachine Learning, Addison—
Wesley, 1989.

[4] Z. Michalewicz, Genetic Algorithms + Data Struc-
tures = FEvolution Programs, 3rd Ed., Springer-
. Verlag, 1996.

2320

Authorized licensed use limited to: Queen's University. Downloaded on August 25,2021 at 12:19:00 UTC from IEEE Xplore. Restrictions apply.



