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A Formal Basis for the Heuristic Determination

of Minimum Cost Paths
PETER E. HART, MEMBER, IEEE, NILS J. NILSSON, MEMBER, IEEE, AND BERTRAM RAPHAEL

Abstract-Although the problem of determining the minimum
cost path through a graph arises naturally in a number of interesting
applications, there has been no underlying theory to guide the
development of efficient search procedures. Moreover, there is no
adequate conceptual framework within which the various ad hoc
search strategies proposed to date can be compared. This paper
describes how heuristic information from the problem domain can
be incorporated into a formal mathematical theory of graph searching
and demonstrates an optimality property of a class of search strate-
gies.

I. INTRODUCTION

A. The Problem of Finding Paths Through Graphs
MANY PROBLEIVIS of engineering and scientific

importance can be related to the general problem of
finding a path through a graph. Examples of such prob-
lems include routing of telephone traffic, navigation
through a maze, layout of printed circuit boards, and
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mechanical theorem-proving and problem-solving. These
problems have usually been approached in one of two
ways, which we shall call the mathematical approach and
the heuristic approach.

1) The Inathematical approach typically deals with the
properties of abstract graphs and with algorithms that
prescribe an orderly examination of nodes of a graph to
establish a minimum cost path. For example, Pollock and
Wiebensonf11 review several algorithms which are guaran-
teed to find such a path for any graph. Busacker and
Saaty[2' also discuss several algorithms, one of which uses
the concept of dynamic programming. [3] The mathematical
approach is generally more concerned with the ultimate
achievement of solutions than it is with the computational
feasibility of the algorithms developed.

2) The heuristic approach typically uses special knowl-
edge about the domain of the problem being represented by
a graph to improve the computational efficiency of solu-
tions to particular graph-searching problems. For example,
Gelernter's 41 program used Euclidean diagrams to direct
the search for geometric proofs. Samuel[1 and others have
used ad hoc characteristics of particular games to reduce
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the "look-ahead" effort in searching game trees. Procedures
developed via the heuristic approach generally have not
been able to guarantee that minimum cost solution paths
will always be found.

This paper draws together the above two approaches by
describing how information from a problem domain can
be incorporated in a formal mathematical approach to a
graph analysis problem. It also presents a general algo-
rithm which prescribes how to use such information to find
a minimum cost path through a graph. Finally, it proves,
under mild assumptions, that this algorithm is optimal in
the sense that it examines the smallest number of nodes
necessary to guarantee a minimum cost solution.
The following is a typical illustration of the sort of

problem to which our results are applicable. Imagine a set
of cities with roads connecting certain pairs of them.
Suppose we desire a technique for discovering a sequence
of cities on the shortest route from a specified start to a
specified goal city. Our algorithm prescribes how to use
special knowledge-e.g., the knowledge that the shortest
road route between any pair of cities cannot be less than
the airline distance between them-in order to reduce the
total number of cities that need to be considered.

First, we must make some preliminary statements and
definitions about graphs and search algorithms.

B. Some Definitions About Graphs
A graph G is defined to be a set I nil of elements called

nodes and a set {eij} of directed line segments called arcs.
If epq is an element of the set { eijj, then we say that there
is an arc from node np to node n, and that nq is a successor
of n,. We shall be concerned here with graphs whose arcs
have costs associated with them. We shall represent the
cost of arc eij by cij. (An arc from ni to nj does not imply
the existence of an arc from nj to ni. If both arcs exist, in
general cij cji.) We shall consider only those graphs G
for which there exists 8 > 0 such that the cost of every arc
of G is greater than or equal to 6. Such graphs shall be
called 8 graphs.

In many problems of interest the graph is not specified
explicitly as a set of nodes and arcs, but rather is specified
implicitly by means of a set of source nodes Sc n} and a
successor operator P, defined on nil}, whose value for each
ni is a set of pairs { (nj, cij) }. In other words, applying r to
node ni yields all the successors nj of ni and the costs cij
associated with the arcs from ni to the various nj. Applica-
tion of r to the source nodes, to their successors, and so
forth as long as new nodes can be generated results in an
explicit specification of the graph thus defined. We shall
assume throughout this paper that a graph G is always
given in implicit form.
The subgraph G,, from any node n in { ni} is the graph

defined implicitly by the single source node n and some r
defined on {ni}. We shall say that each node in G,, is
accessible from n.
A path from n, to nk is an ordered set of nodes (n1, n2,

... , nk) with each ni+ a successor of ni. There exists a path
from ni to nj if and only if nj is accessible from ni. Every

path has a cost which is obtained by adding the individual
costs of each arc, ci,i+l, in the path. An optimal path from
ni to nj is a path having the smallest cost over the set of all
paths from ni to nj. We shall represent this cost by h(ni, n3).

This paper will be concerned with the subgraph G, from
some single specified start node s. We define a nonempty
set T of nodes in GU as the goal nodes.1 For aniy node n in
G., an element t e T is a preferred goal node of n if and only
if the cost of an optimal path from n to t does not exceed
the cost of any other path from n to any member of T.
For simplicity, we shall represent the unique cost of an
optimal path from n to a preferred goal node of n by the
symbol h(n); i.e., h(n) = min h(n,t).

teT

C. Algorithms for Finding Minimun Cost Paths

We are interested in algorithms that search G, to find
an optimal path from s to a preferred goal node of s. What
we mean by searching a graph and finding an optimal path
is made clear by describing in general how such algorithms
proceed. Starting with the node s, they generate some part
of the subgraph G, by repetitive application of the suc-
cessor operator r. During the course of the algorithm, if
P is applied to a node, we say that the algorithm has
expanded that node.
We can keep track of the minimum cost path from s to

each node encountered as follows. Each time a node is
expanded, we store with each successor node n both the
cost of getting to n by the lowest cost path found thus far,
and a pointer to the predecessor of n along that path.
Eventually the algorithm terminates at some goal node t,
and no more nodes are expanded. We can then reConstruct
a minimum cost path from s to t known at the time of
termination simply by chaining back from t to s through
the pointers.
We call an algorithm admissible if it is guaranteed to

find an optimal path from s to a preferred goal node of s
for any 8 graph. Various admissible algorithms may differ
both in the order in which they expand the nodes of G, and
in the number of nodes expanded. In the next section, we
shall propose a way of ordering node expansion and show
that the resulting algorithm is admissible. Then, in a fol-
lowing section, we shall show, under a mild assumption,
that this algorithm uses information from the problem
represented by the graph in an optimal way. That is, it
expands the smallest number of nodes necessary to guar-
antee finding an optimal path.

II. AN ADMISSIBLE SEARCHING ALGORITHM

A. Description of the Algorithm
In order to expand the fewest possible nodes in searching

for an optimal path, a search algorithm must constantly
make as informed a decision as possible about which node
to expand next. If it expands nodes which obviously cannot
be on an optimal path, it is wasting effort. On the other
hand, if it continues to ignore nodes that might be oIn an

I We exclude the trivial case of s e T.
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optimal path, it will sometimes fail to find such a path and
thus not be admissible. An efficient algorithm obviously
needs some way to evaluate available nodes to determine
which one should be expanded next. Suppose some evalu-
ation function f(n) could be calculated for any node n.
We shall suggest a specific function below, but first we shall
describe how a search algorithm would use such a function.

Let our evaluation function f(n) be defined in such a
way that the available node having the smallest value off
is the node that should be expanded next. Then we can
define a search algorithm as follows.

Search Algorithmn A*:
1) Mark s "open" and calculatef(s).
2) Select the open node n whose value of f is smallest.

Resolve ties arbitrarily, but always in favor of any node
n E T.

3) If n e T, mark n "closed" and terminate the algorithm.
4) Otherwise, mark n closed and apply the successor

operator P to n. Calculate f for each successor of n and
mark as open each successor not already marked closed.
Remark as open any closed node n, which is a successor of
n and for which f(ni) is smaller now than it was when n,
was marked closed. Go to Step 2.

We shall next show that for a suitable choice of the
evaluation function f the algorithm A* is guaranteed to
find an optimal path to a preferred goal node of s and thus
is admissible.

B. The Evaluation Function
For any subgraph GU and any goal set T, let f(n) be the

actual cost of an optimal path constrained to go through n,
from s to a preferred goal node of n.
Note that f(s) = h(s) is the cost of an unconstrained

optimal path from s to a preferred goal node of s. In fact,
f(n) -f(s) for every node n on an optimal path, and
f(n) > f(s) for every node n not on an optimal path. Thus,
although f(n) is not known a priori (in fact, determination
of the true value of f(n) may be the main problem of inter-
est), it seems reasonable to use an estimate of f(n) as the
evaluation function f(n). In the remainder of this paper,
we shall exhibit some properties of the search algorithm A *
when the cost f(n) of an optimal path through node n is
estimated by an appropriate evaluation function f(n).
We can write f(n) as the sum of two parts:

f(n) = g(n) + h(n) (1)

where g(n) is the actual cost of an optimal path from s to n,
and h(n) is the actual cost of an optimal path from n to a
preferred goal node of n.
Now, if we had estimates of g and h, we could add them

to form an estimate of f. Let g(n) be an estimate of g(n).
An obvious choice for g(n) is the cost of the path from s to
n having the smallest cost so far found by the algorithm.
Notice that this implies 0(n) > g(n).
A simple example will illustrate that this estimate is

easy to calculate as the algorithm proceeds. Consider the

Fig. 1.

subgraph shown in Fig. 1. It consists of a start node s and
three other nodes, n3, n2, and n3. The arcs are shown with
arrowheads and costs. Let us trace how algorithm A* pro-
ceeded in generating this subgraph. Starting with s, we
obtain successors ni and n2. The estimates 0(n1) and &(n2)
are then 3 and 7, respectively. Suppose A * expands ni next
with successors n2 and n3. At this stage g(n3) = 3 + 2 = 5,
and g(n2) is lowered (because a less costly path to it has
been found) to 3 + 3 = 6. The value of 0(no) remains
equal to 3.
Next we must have an estimate h(n) of h(n). Here we

rely on information from the problem domain. Many
problems that can be represented as a problem of finding a
minimum cost path through a graph contain some "physi-
cal" information that can be used to form the estimate A.
In our example of cities connected by roads, h(n) might be
the airline distance between city n and the goal city. This
distance is the shortest possible length of any road con-
necting city n with the goal city; thus it is a lower bound on
h(n). We shall have more to say later about using informa-
tion from the problem domain to form an estimate f, but
first we can prove that if h is any lower bound of h, then
the algorithm A* is admissible.

C. The Admissibility of A *

We shall take as our evaluation function to be used in A*

f(n) = A(n) + Ai(n) (2)

where g(n) is the cost of the path from s to n with minimum
cost so far found by A *, and J(n) is any estimate of the
cost of an optimal path from n to a preferred goal node of
n. We first prove a lemma.

Lemma 1

For any nonclosed node n and for any optimal path P
from s to n, there exists an open node n' on P with g(n')-
g(n').

Proof: Let P = (s no, n1, n2, nk = n). If s is open
(that is, A* has not completed even one iteration), let
n -s, and the lemma is trivially true since 0(s) = g(s)
0. Suppose s is closed. Let A be the set of all closed
nodes ni in P for which g(ni) = g(ni). A is not empty,
since by assumption s e A. Let n* be the element of A with
highest index. Clearly, n* 5 n, as n is nonclosed. Let n'
be the successor of n* on P. (Possibly n' = n.) Now
0(n') . g(n*) + cn*,w, by definition of 0; -(n*) - g(n*)
because n~is in A, and g(n') = g(n*) + Cn*,n, because P
is an optimal path. Therefore, g(n') < g(n'). But in
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general, g(n') > g(n'), since the lowest cost g(n') from s
to n' discovered at any time is certainly not lower than
the optimal cost g(n'). Thus O(n') = g(n'), and moreover,
n' must be open by the definition of A.

Corollary
Suppose h(n) < h(n) for all n, and suppose A* has not

terminated. Then, for any optimal path P from s to any
preferred goal node of s, there exists an open node n' on P
with f(n') < f(s).

Proof: By the lemma, there exists an open node n' on P
with g(n') = g(n'), so by definition of f

f(n') - (n') + hf(n')

- g(n') + hJ(n')
< g(n') + h(n') = f(n').

But P is an optimal path, so f(n') = f(s) for all n'e P,
which completes the proof. We can now prove our first
theorem.

Theorem 1
If ii(n) < h(n) for all n, then A* is admissible.
Proof: We prove this theorem by assuming the contrary,

namely that A* does not terminate by finding an optimal
path to a preferred goal node of s. There are three cases to
consider: either the algorithm terminates at a nongoal node,
fails to terminate at all, or terminates at a goal node with-
out achieving minimum cost.

Case 1

Termination is at a nongoal node. This case contradicts
the termination condition (Step 3) of the algorithm, so it
may be eliminated immediately.

Case 2

There is no termination. Let t be a preferred goal node of
s, accessible from the start in a finite number of steps,
with associated minimum cost f(s). Since the cost on any
arc is at least 3, then for any node n further than M-
f(s)/6 steps from s, we have f(n) > g(n) > g(n) > Mb-
f(s). Clearly, no node n further than M steps from s is ever
expanded, for by the corollary to Lemma 1, there will be
some open node n' on an optimal path such that f(n') <
f(s) < f(n), so, by Step 2, A* will select n' instead of n.
Failure of A* to terminate could then only be caused by
continued reopening of nodes within M steps of s. Let
%(M) be the set of nodes accessible within M steps from s,
and let P(M) be the number of nodes in %(M). Now, any
node n in %(M) can be reopened at most a finite number of
times, say p3(n, M), since there are only a finite number of
paths from s to n passing only through nodes within M
steps of s. Let

p(M) = max p(n, M),
neX(M)

the maximum number of times any one node can be re-
opened. Hence, after at most v(M)p(M) expansions, all

nodes in x(M) must be forever closed. Since no nodes out-
side x(M) can be expanded, A* must terminate.

Case 3

Termination is at a goal node without achieving mini-
mum cost. Suppose A* terminates at some goal node t
with f(t) = g(t) > f(s). But by the corollary to Lemma 1,
there existed just before termination an open node n' on
an optimal path with f(n') < f(s) < f(t). Thus at this
stage, n' would have been selected for expansion rather
than t, contradicting the assumption that A* terminated.
The proof of Theorem 1 is now complete. In the next

section, we shall show that for a certain choice of the
function h(n), A* is not only admissible but optimal, in
the sense that no other admissible algorithm expands
fewer nodes.

III. ON THE OPTIMALITY OF A*
A. Limitation of Subgraphs by Informationfrom the Problem

In the preceding section, we proved that if h(n) is any
lower bound on h(n), then A* is admissible. One such
lower bound is h(n) = 0 for all n. Such an estimate amounts
to assuming that any open node n might be arbitrarily
close to a preferred goal node of n. Then the set {Gn is
unconstrained; anything is possible at node n, and, in
particular, if g is a minimum at node n, then niode n must
be expanded by every admissible algorithm.

Often, however, we have information from the problem
that constrains the set { Gn} of possible subgraphs at each
node. In our example with cities connected by roads, no
subgraph G01 is possible for which h(n) is less than the
airline distance between city n and a preferred goal city of
n. In general, if the set of possible subgraphs is con-
strained, one can find a higher lower bound of h(n) than
one can for the unconstrained situation. If this higher lower
bound is used for h(n), then A* is still admissible, but, as
will become obvious later, A* will generally expand fewer
nodes. We shall assume in this section that at each node n,
certain information is available from the physical situation
on which we can base a computation to limit the set; Gn3
of possible subgraphs.
Suppose we denote the set of all subgraphs from node n

by the symbol I Gn,,,} where c indexes each subgraph, and
co is in some index set Q,n. Now, we presume that certain
information is available from the problem domain about
the state that node n represents; this information limits
the set of subgraphs from node n to the set Gn,0o}, where
6 is in some smaller index set OnC Qn.
For each Gn,, in { Gn,0} there corresponds a cost ho(n)

of the optimum path from n to a preferred goal node of n.
We shall now take as our estimate i(n), the greatest
lower bound for ho(n). That is,

hi(n) = inf h(n).
0 ,On

(3)

We assume the infimum is achieved for some fOn
In actual problems one probably never has an explicit

representation for { Gn,0 but instead one selects a pro-
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cedure for computing A(n), known from information
about the problem domain, to be a lower bound on h(n).
This selection itself induces the set { Gn,0} by (3). Never-
theless, it is convenient to proceed with our formal dis-
cussioni as if { Gn,O} were available and as if A(n) were
explicitly calculated from (3). For the rest of this paper,
we assume that the algorithm A * uses (3) as the definition
of A.

B. A Consistency Assumption
When a real problem is modeled by a graph, each node

of the graph corresponds to some state in the problem
domain. Our general knowledge about the structure of the
problem domain, together with the specific state repre-
sented by a node n, determines how the set Qn is reduced to
the set O,. However, we shall make one assumption
about the uniformity of the manner in which knowledge
of the problem domain is used to impose this reduction.
This assumption may be stated formally as follows. For
any nodes m and n,

h(m,n) + inf ho0(n) > inf ho(m). (4)
OceOn oeOm

Using the definition of A given in (3), we can restate (4)
as a kind of triangle inequality:

h(m, n) + A(n) 2 A(m). (5)

The assumption expressed by (4) [and therefore (5)]
amounts to a type of consistency assumption on the esti-
mate h(n) over the nodes. It means that any estimate h(n)
calculated from data available in the "physical" situation
represented by node n alone would not be improved by
using corresponding data from the situations represented
by the other nodes. Let us see what this assumption means
in the case of our example of cities and roads. Suppose we
decide, in this example, to use as an estimate A(n), the air-
line distance from city n to its closest goal city. As we have
stated previously, such an estimate is certainly a lower
bound on h(n). It induces at each node n a set { Gn,0} of
possible subgraphs from n by (3). If we let d(m, n) be the
airline distance between the two cities- corresponding to
nodes n and m, we have h(m, n) > d(m, n) and, therefore,
by the triangle inequality for Euclidean distance

h(m, n) + h(n) > d(m, n) + h(n) > h(m),
which shows that this A satisfies the assumption of (5).
Now let us consider for a moment the following A for the

roads-and-cities problem. Suppose the nodes of the graph
are numbered sequentially in the order in which they are
discovered. Let A for cities represented.by nodes with odd-
numbered indexes be the airline distance to a preferred
goal city of these nodes, and let A = 1 for nodes with even-
numbered indexes. For the graph of Fig. 2, f(s) h(ni) = 8.
Nodes n2 and n3 are the successors of n, along arcs with
costs as indicated. By the above rule for computing A,
h(n2) 1 while A(n3) = 5. Then f(n2) = 6 + 1 = 7, while
f(n) = 3 + 5 = 8, and algorithm A* would erroneously

3 n 5 t

Fig. 2.

choose to expand node n2 next. This error occurs because
the estimates h(s) = 8 and h(n2) = 1 are inconsistent in
view of the fact that n2 is only six units away from s. The
information that there cannot exist a path from s to a goal
with total cost less than eight was somehow available for
the computation of h(s), and then ignored during the com-
putation of (n2). The result is that (5) was violated, i.e.,

h(s, n2) + A(n2) = 6 + 1 < 8 = h(s).

For the rest of this paper, we shall assume that the
family { 04 of index sets satisfies (4) or, equivalently, the
procedures for computing the estimates A always lead to
values that satisfy (5). We shall call this assumption the
consistency assumption. Note that the estimate A(n) = 0
for all n trivially satisfies the consistency assumption.
Intuitively, the consistency assumption will generally be
satisfied by a computation rule for h that uniformly uses
measurable parameters of the problem state at all nodes;
it will generally be violated if the computation rule de-
pends upon any parameter that varies between nodes
independently of the problem state (such as a parity
count or a random variable), or if the computations at
some nodes are more elaborate than at others.

C. Proof of the Optimality of A *

The next lemma makes the important observation about
the operation of A* that, under the consistency assump-
tion, if node n is closed, then fr(n) = g(n). This fact is im-
portant for two reasons. First, it is used in the proof of the
theorem about the optimality of A * to follow, and second,
it states that A * need never reopen a closed node. That is,
if A* expands a node, then the optimal path to that node
has already been found. Thus, in Step 4 of the algorithm
A*, the provision for reopening a closed node is vacuous
and may be eliminated.

Lemma 2

Suppose the consistency assumption is satisfied, and
suppose that node n is closed by A*. Then g(n) = g(n).

Proof: Consider the subgraph Gs just before closing n,
and suppose the contrary, i.e., suppose g(n) > g(n). NoW
there exists some optimal path P from s to n. Since '(n) >
g(n), A* did not find P. By Lemma 1, there exists an open
node n' on P with g(n') = g(n'). If n' = n, we have
proved the lemma. Otherwise,
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g(n) g(n') + h(n',n)

g(n') + h(n',n).

Thus,

9(n) > g(n') + h(n',n).
Adding h(n) to both sides yields

0(n) + h(n) > g(n') + h(n',n) + A(n).

We can apply (5) to the right-hand side of the above in-
equality to yield

0(n) + h(n) > g(n') + h(n')

or

f(n) > f(n'),
contradicting the fact that A * selected n for expansion
when n' was available and thus proving the lemma.
The next lemma states that f is monotonically nonde-

creasing on the sequence of nodes closed by A *.

Lemma S
Let (n1, n2, .., n,) be the sequence of nodes closed by

A*. Then, if the consistency assumption is satisfied, p . q
impliesf(np,) < f(nq).

Proof: Let n be the next node closed by A * after closing
m. Suppose first that the optimum path to n does not go
through m. Then n was available at the time m was
selected, and the lemma is trivially true. Then suppose that
the optimum path to n does, in fact, go through m. Then
g(n) = g(m) + h(m, n). Since, by Lemma 2, we have
0(n) g(n) and g(m) =g(m),

J(n) -C(n) + A(n)
-g(n) + h(n)

g(m) + h(m, n) + h(n)
> g(m) + h(m)

- (m) + A(m)

where the inequality follows by application of (5). Thus we
have

f(n) . f(m).

Since this fact is true for any pair of nodes tk and nk+l in
the sequence, the proof is complete.

Corollary
Under the premises of the lemma, if n is closed then

f(n) < f(s).
Proof: Let t be the goal node found by A*. Then f(n) <

>(t) = f(t) = f(s).
We can now prove a theorem about the optimality of A *

as compared with any other admissible algorithm A that

uses no more information about the problem thanl does A *.
Let 0/, be the index set used by algorithm A at node n.
Then, if OnA* C 0"A for all nodes n in Gs, we shall say that
algorithm A is no more informed than algorithm A*.

The next theorem states that if an admissible algorithm
A is no more informed than A *, then any node expanded by
A * must also be expanded by A. We prove this theorem
for the special case for which ties never occur in the value
of f used by A *. Later we shall generalize the theorem to
cover the case where ties can occur, but the proof of the no-
ties theorem is so transparent that we include it for clarity.

Theorem 2

Let A be any admissible algorithm no more iniformed
than A*. Let G, be any a graph such that n # m implies
f(n) X f(m), and let the consistency assumption be satis-
fied by the h used in A *. Then if niode n was expanided by
A*, it was also expanded by A.

Proof: Suppose the contrary. Then there exists some
node n expanded by A* but not by A. Let t* anid t be the
preferred goal nodes of s found by A* and A, respectively.
Since A * and A are both admissible,

f(t*) 0(t*) + A(t*) -J(t*) + 0 = f(t*) f(t) = f(s).
Since A * must have expanded n before closing t*, by

Lemma 3 we have

f(n) < f(t*) = f(t)
(Strict inequality occurs because no ties are allowed.)
There exists some graph Gn,, 0 eEOn,3 for which A(n) -

h(n) by the definitioin of h. Now by Lemma 2,0(n) = g(n).
Then on the graph Gn,Oi f(n) = f(n). Since A is no more
informed than. A*, A could not rule out the existence of
Gn,O; but A did not expand n before termination and is,
therefore, not admissible, contrary to our assumption and
completing the proof.
Upon defining N(A,Gs) to be the total number of nodes

in G, expanded by the algorithm A, the following simple
corollary is immediate.

Corollary
Under the premises of Theorem 2,

N(A*, Gs) < N(A, Gs)
with equality if and only if A expands the identical set of
nodes as A*.

In this sense, we claim that A* is an optimal algorithm.
Compared with other no more informed admissible
algorithms, it expands the fewest possible nodes necessary
to guarantee finding an optimal path.

In case of ties, that is if there exist two or more open
nodes n1, . ., nk with f(n1) = ... = f(n,) < f(n) for every
other open node n, A * arbitrarily chooses one of the ni.
Consider the set C* of all algorithms that act identically to
A * if there are no ties, but whose members resolve ties
differently. An algorithm is a member of R* if it is simply
the original A * with any arbitrary tie-breaking rule.
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The next theorem extends Theorem 2 to situations where
ties may occur. It states that for any admissible algorithm
A, one can always find a member A* of R* such that each
node expanded by A* is also expanded by A.

Theorem 3

Let A be any admissible algorithm no more informed
than the algorithms in a'*, and suppose the consistency
assumption is satisfied by the A used in the algorithms in
*. Then for any a graph G, there exists an A*E G,* such
that every node expanded by A* is also expanded by A.

Proof: Let G, be any a graph and Al* be any algorithm
in a*. If every node of G, that A1* expands is also ex-
panded by A, let A1* be the A* of the theorem. Otherwise,
we will show how to construct the A* of the theorem by
changing the tie-breaking rule of A,*. Let L be the set of
nodes expanded by A, and let P = (s, n1, n2, ..*, nk, t) be
the optimal path found by A.

Expand nodes as prescribed by A1* as long as all nodes
selected for expansion are elements of L. Let n be the first
node selected for expansion by A1* which is not in L. Now
f(n) < f(s) by the corollary to Lemma 3. Since A(n) <
f(s) = f(t) would imply that A is inadmissible (by the
argument of Theorem 2), we may conclude that f(n)
f(s). At the time A1* selected n, goal node t was not closed
(or A1* would have been terminated). Then by the
corollary to Lemma 1, there is an open node n' on P such
that f(n') < f(s) f(n). But since n was selected for ex-
pansion by A1* instead of n', A(n) < f(n'). Hence f(n) <
A(n') < A(n), so f(n) = f('). Let A2* be identical to A1*
except that the tie-breaking rule is modified just enough to
choose n' instead of n. By repeating the above argument,
we obtain for some i an A *,e a* that expands only nodes
that are also expanded by A, completing the proof of the
theorem.

Corollary 1

Suppose the premises of the theorem are satisfied. Then
for any a graph G, there exists an A *e a* such that N(A *,
GQ) AN(A, G,), with equality if and only if A expands the
identical set of nodes as A*.

Since we cannot select the most fortuitous tie-breaking
rule ahead of time for each graph, it is of interest to ask
how all members of a* compare against any admissible
algorithm A in the number of nodes expanded. Let us
define a critical tie between n and n' as one for which
J(n) =(n') ff(s). Then we have the following as a second
corollary to Theorem 3.

Corollary 2

Suppose the premises of the theorem are satisfied. Let
R(A*, C,) be the number of critical ties which occurred in
the course of applying A* to G,. Then for any a graph G,
and any A*Ea*,

AV(A*, Gs) N(A, Gs) + R(A*, G,).

Proof: For any noncritical tie, all alternative nodes must
be expanded by A as well as by A* or A would not be
admissible. Therefore, we need merely observe that each
node expanded by A* but not by A must correspond to a
different critical tie in which A *'s tie-breaking rule made
the inappropriate choice.
Of course, one must remember that when A does expand

fewer nodes than some particular A* in 02*, it is only be-
cause A was in some sense "lucky" for the graph being
searched, and that there exists a graph consistent with the
information available to A and A * for which A * would not
search more nodes than A.
Note that, although one cannot keep a running estimate

of R while the algorithm proceeds because one does not
know the value of f(s), this value is established as soon as
the algorithm terminates, and R can then be easily com-
puted. In most practical situations, R is not likely to be
large because critical ties are likely to occur only very
close to termination of the algorithm, when A can become a
perfect estimator of h.

IV. DiscussION AND CONCLUSIONS
A. Comparisons Between A * and Other Search Techniques

Earlier we mentioned that the estimate A(n) - 0 for all
n trivially satisfies the consistency assumption. In this
case, f(n) = &(n), the lowest cost so far discovered to node
n. Such an estimate is appropriate when no information at
all is available from the problem domain. In this case, an
admissible algorithm cannot rule out the possibility that
the goal might be as close as a to that node with minimum
g(n). Pollack and WiebensonUl] discuss an algorithm, pro-
posed to them by Minty in a private communication, that
is essentially identical to our A* using f(n) = g(n).
Many algorithms, such as Moore's "Algorithm D"[fi

and Busacker and Saaty's implementation of dynamic
programming, keep track of g(n) but do not use it to
order the expansion of nodes. The nodes are expanded in a
"breadth-first" order, meaning that all nodes one step
away from the start are expanded first, then all nodes two
steps away, etc. Such methods must allow for changes in
the value of g(n) as a node previously expanded is later
reached again by a less costly route.

It might be argued that the algorithms of Moore,
Busacker and Saaty, and other equivalent algorithms
(sometimes known as "water flow" or "amoeba" algo-
rithms) are advantageous because they first encounter the
goal by a path with a minimum number of steps. This
argument merely reflects an imprecise formulation of the
problem, since it implies that the number of steps, and not
the cost of each step, is the quantity to be minimized.
Indeed, if we set cij = 1 for all arcs, this class of algorithms
is identical to A* with A-0. We emphasize that, as is
always the case when a mathematical model is used to
represent a real problem, the first responsibility of the in-
vestigator is to ensure that the model is an adequate
representation of the problem for his purposes.
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It is beyond the scope of the discussion to consider how
to define a successor operator P or assign costs cij so that
the resulting graph realistically reflects the nature of a
specific problem domain.2

B. The Heuristic Power of the Estimate A

The algorithm A * is actually a family of algorithms; the
choice of a particular function A selects a particular
algorithm from the family. The function A can be used to
tailor A * for particular applications.
As was discussed above, the choice AO0 corresponds to

the case of knowing, or at least of using, absolutely no
information from the problem domain. In our example of
cities connected by roads, this would correspond to assum-

ing a priori that roads could travel through "hyperspace,"
i.e., that any city may be an arbitrarily small road dis-
tance from any other city regardless of their geographic
coordinates.

Since we are, in fact, "more informed" about the nature
of Euclidean space, we might increase A(n) from 0 to
Nx2 + y2 (where x and y are the magnitudes of the differ-
ences in the x, y coordinates of the city represented by
node n and its closest goal city). The algorithm would
then still find the shortest path, but would do so by ex-

panding, typically, considerably fewer nodes. In fact,
A * expands no more nodes3 than any admissible algorithm
that uses no more information from the problem domain;
viz., the information that a road between two cities might
be as short as the airline distance between them.
Of course, the discussion thus far has not considered the

cost of computing A each time a node is generated on the
graph. It could be that the computational effort required
to compute x2+ y2is significant when compared to the
effort involved in expanding a few extra nodes; the optimal
procedure in the sense of minimum number of nodes ex-

panded might not be optimal in the sense of minimum
total resources expended. In this case one might, for ex-

2 We believe that appropriate choices for r and c will permit
many of the problem domains in the heuristic programming lit-
erature[7 to be mapped into graphs of the type treated in this paper.

This could lead to a clearer understanding of the effects of "heu-
ristics" that use information from the problem domain.

3 Except for possible critical ties, as discussed in Corollary 2 of
Theorem 3.

ample, choose h(n) = (x + y)/2. Since (x + y)/2 <
V/x2 + y2, the algorithm is still admissible. Since we are
not using "all" our knowledge of the problem domain, a
few extra nodes may be expanded, but total computational
effort may be reduced; again, each "extra" node must also
be expanded by other admissible algorithms that limit
themselves to the "knowledge" that the distance between
two cities may be as small as (x + y)/2.
Now suppose we would like to reduce our computational

effort still further, and would be satisfied with a solution
path whose cost is not necessarily minimal. Then we could
choose an A somewhat larger than the one defined by (3).
The algorithm would no longer be admissible, but it
might be more desirable, from a heuristic point of view,
than any admissible algorithm. In our roads-and-cities
example, we might let A - x + y. Since road distance is
usually substantially greater than airline distance, this h
will usually, but not always, result in an Qptimal solution
path. Often, but not always, fewer nodes will be expanded
and less arithmetic effort required than: if we used A(n)
VX2 + y2.
Thus we see that the formulation presented uses one

function, A, to embody in a formal theory all knowledge
available from the problem domain. The selection of A,
therefore, permits one to choose a desirable compromise
between admissibility, heuristic effectiveness, and com-
putational efficiency.
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