M. Aquino; G. Orlova; B. MacLean

Name: \qquad ID: \qquad
This exam has a three-hour (3 hour) time limit.
Read over the entire exam before beginning. Do those questions that you find easiest in the beginning. Proceed through the exam from the easier questions to the harder ones. Ration your time according to the value of each question.

There should be twenty-eight different questions. A periodic table and an equation sheet are also provided (attached to the back of your exam). If your exam does not contain 28 questions (16 total pages), notify the instructor immediately.

Answer all questions on this exam paper.
Read all questions carefully!! Please write legibly!!

Question	Full Marks	Marks Earned	Question	Full Marks	Marks Earned
Multiple Choice	32		22	8	
$\mathbf{1 7}$	4		23	8	
$\mathbf{1 8}$	4		24	8	
$\mathbf{1 9}$	4		25	8	
20	4		26	8	
21	4		Total	100	
				8	

Have you put your name and ID at the top of this page?

Please clearly circle the letter of your answer. If two or more answers are circled, the question will be marked wrong regardless of whether the correct answer is circled. Wrong answers will not be penalized, so guess if you have to!

1. Which substance in the reaction below either appears or disappears the fastest?

$$
4 \mathrm{NH}_{3}+7 \mathrm{O}_{2} \longrightarrow 4 \mathrm{NO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

a) NH_{3}
b) O_{2}
c) NO_{2}
d) $\mathrm{H}_{2} \mathrm{O}$
e) The rates of appearance/disappearance are the same for all of these.
2. The rate law of a certain reaction is rate $=k[\mathrm{~A}][\mathrm{B}]$. The units of the rate constant are \qquad .
a) $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$
b) $\mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$
c) $\mathrm{mol}^{2} \mathrm{~L}^{-2} \mathrm{~s}^{-1}$
d) $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-2}$
e) $\mathrm{L}^{2} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$
3. The rate constant of a first-order process that has a half-life of 225 s is \qquad s^{-1}.
a) 0.693
b) 3.08×10^{-3}
c) 1.25
d) 12.5
e) 4.44×10^{-3}
4. Which of the following ionic compounds should possess the greatest lattice energy?
a) LiBr
b) LiF
c) MgO
d) NaCl
e) MgF_{2}
5. Which of the following molecules possesses the shortest $\mathrm{N}-\mathrm{N}$ bond length?
a) $\mathrm{N}_{2} \mathrm{O}$
b) $\mathrm{N}_{2} \mathrm{H}_{4}$
c) N_{2}
d) $\mathrm{N}_{2} \mathrm{O}_{4}$
e) NO_{2}
6. Hydrocarbons containing carbon-carbon triple bonds are called \qquad .
a) alkanes
b) aromatic hydrocarbons
c) alkynes
d) alkenes
e) olefins
7. For the compound shown on the right, the bond angle indicated would most correctly be described as:
a) 180°
b) 109.5°
c) A little greater than 120°
d) A little greater than 109.5°

e) A little less than 109.5°
8. From the correct Lewis structure for formaldehyde $\left(\mathrm{H}_{2} \mathrm{CO}\right)$, how many σ-bonds, π-bonds, and non-bonding pairs can be found?
a) 2, 2, 2
b) 2, 1, 2
c) $3,1,1$
d) $3,1,2$
e) $1,3,2$
9. Which of the following is false?
a) $\Delta \mathrm{H}$ is an extensive property
b) $\Delta \mathrm{H}_{\mathrm{f}}{ }^{0}$ for $\mathrm{H}_{2}(l)$ is zero
c) The enthalpy change for a reaction is equal in magnitude, but opposite in sign, to $\Delta \mathrm{H}$ for the reverse reaction
d) The enthalpy change for a reaction depends on the states of the reactants and products
e) Enthalpy is a state function
10. Pentane has \qquad structural isomers.
a) 0
b) 1
c) 2
d) 3
e) 4
11. The following reaction would produce a(n) \qquad .

$$
\mathrm{R}-\mathrm{OH}+\mathrm{R}^{\prime} \mathrm{COOH} \longrightarrow
$$

a) ketone
b) ether
c) aldehyde
d) alcohol
e) ester
12. The equilibrium constant for a reaction is 0.48 at $25^{\circ} \mathrm{C}$. What is the value of $\Delta \mathrm{G}^{0}(\mathrm{~kJ} / \mathrm{mol})$ at this temperature?
a) 1.8
b) -4.2
c) 1.5×10^{2}
d) 4.2
e) -1.8
13. For a reaction to be spontaneous under standard conditions at all temperatures the signs of $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{S}^{0}$ must be \qquad and \qquad respectively.
a) + , +
b) +, -
c) -, -
d) -, +
e),+ 0
14. Which set of three quantum numbers; n, l, m_{1}, corresponds to a 3d orbital?
a) $3,3,2$
b) $3,2,2$
c) $3,2,3$
d) $2,1,0$
e) $2,3,3$
15. A reaction that is spontaneous as written \qquad
a) is very rapid
b) will proceed without outside intervention
c) is also spontaneous in reverse direction
d) has an equilibrium position that lies far to the left
e) is very slow
16. The value of $\Delta \mathrm{G}^{0}$ (in $\mathrm{kJ} / \mathrm{mol}$) at $100^{\circ} \mathrm{C}$ for the reaction below is \qquad

$$
\mathrm{S}(\mathrm{~s}, \text { rhombic })+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{SO}_{2}(g)
$$

At $25^{\circ} \mathrm{C}, \Delta \mathrm{H}^{\circ}$ for this reaction is $-269.9 \mathrm{~kJ} / \mathrm{mol}$, and $\Delta \mathrm{S}^{\circ}$ is $+11.6 \mathrm{~J} /(\mathrm{mol}-\mathrm{K})$
a) -300.4
b) +300.4
c) -4.597
d) +4.597
e) -274.2

PART (II). Short Answer (20 marks, each worth 4 marks). Please answer in the space provided.
17. Which of the following molecules/ions will possess a dipole moment? Are any of these planar (flat)? If so, circle each one that is.
$\mathrm{CO}_{3}{ }^{2-}$
NH_{3}
BrF_{3}
18. What is the energy content of 25 g of a breakfast cereal that is 75% carbohydrates, 10% fats, and 15% proteins in its makeup? (energy content: proteins: $17 \mathrm{~kJ} / \mathrm{g}$; fats: $38 \mathrm{~kJ} / \mathrm{g}$; carbohydrates: $17 \mathrm{~kJ} / \mathrm{g}$)
19. Given the data in the table below and $\Delta \mathrm{H}^{\mathrm{r} x n}$ for the reaction:

$$
\mathrm{CaC}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{0}=-127.2 \mathrm{~kJ} / \mathrm{mol}
$$

Calculate $\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}$ of $\mathrm{CaC}_{2}(\mathrm{~s})$, in $\mathrm{kJ} / \mathrm{mol}$.
Substance $\quad \underline{\Delta \mathrm{H}^{\mathrm{o}} \mathrm{t}, \mathrm{kJ} / \mathrm{mol}}$
$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \quad-986$
$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g}) \quad 227$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad-286$
20. Write the electron configuration for the element which is in the $3^{\text {rd }}$ period of the periodic table, which has the following ionization energies: $\mathrm{IE}_{1}=786 \mathrm{~kJ} / \mathrm{mol} ; \mathrm{IE}_{2}=1577 \mathrm{~kJ} / \mathrm{mol} ; \mathrm{IE}_{3}=$ $3232 \mathrm{~kJ} / \mathrm{mol} ; \mathrm{IE}_{4}=4356 \mathrm{~kJ} / \mathrm{mol} ; \mathrm{IE}_{5}=16091 \mathrm{~kJ} / \mathrm{mol}$.
21. Draw the structures of the products of the following reactions:
a) cyclohexene $+\mathrm{H}_{2} \longrightarrow$
b) acetic acid + propanol \longrightarrow

PART (III) Long Answers (Answer 6 questions, each is worth 8 marks for a total of 48 marks). Please answer in the space provided.
22. The $\Delta \mathrm{G}^{0}$ for the reaction: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{HI}(\mathrm{g})$ is $2.60 \mathrm{~kJ} / \mathrm{mol}$ at $25^{0} \mathrm{C}$.

Calculate $\Delta \mathrm{G}$, and predict the direction in which the reaction is spontaneous if the initial pressures are: $\mathrm{P}_{\mathrm{H} 2}=3.5 \mathrm{~atm} ; \mathrm{P}_{\mathrm{I} 2}=1.5 \mathrm{~atm}, \mathrm{P}_{\mathrm{HI}}=1.75 \mathrm{~atm}$.
23. Urea $\left(\mathrm{NH}_{2} \mathrm{CONH}_{2}\right)$ is the end product in protein metabolism in animals. The decomposition of urea in 0.1 M HCl occurs as follows:

$$
\mathrm{NH}_{2} \mathrm{CONH}_{2}(a q)+\mathrm{H}^{+}(a q)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 2 \mathrm{NH}_{4}^{+}(a q)+\mathrm{HCO}_{3}^{-}(a q)
$$

The reaction is first-order in urea and first-order overall. When $\left[\mathrm{NH}_{2} \mathrm{CONH}_{2}\right]=0.200 \mathrm{M}$, the rate at $61^{\circ} \mathrm{C}$ is $8.56 \times 10^{-5} \mathrm{M} / \mathrm{s}$.
a) What is the value for the rate constant, k ? (3 marks)
b) What is the concentration of urea in this solution after $4.00 \times 10^{3} \mathrm{~s}$ if the starting concentration is 0.500 M ? (3 marks)
c) What is the half-life for this reaction at $61^{\circ} \mathrm{C}$? (2 marks)
24. Calculate the standard enthalpy of formation of gaseous diborane $\left(\mathrm{B}_{2} \mathrm{H}_{6}\right)$ using the following thermochemical information:

$$
\begin{aligned}
4 \mathrm{~B}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{~B}_{2} \mathrm{O}_{3}(\mathrm{~s}) & \Delta \mathrm{H}^{0}=-2509.1 \mathrm{~kJ} \\
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}^{\mathrm{o}}=-571.7 \mathrm{~kJ} \\
\mathrm{~B}_{2} \mathrm{H}_{6}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \begin{array}{l}
\Delta \mathrm{H}^{\mathrm{o}}=-2147.5 \mathrm{~kJ}
\end{array}
\end{aligned}
$$

25. Ethane, like all hydrocarbons, can be combusted to release heat.
a) Using the bond enthalpies given, calculate $\Delta \mathrm{H}(\mathrm{kJ} / \mathrm{mol})$ for the complete combustion of 1 mol of ethane. (5 marks)

Bond type	Bond enthalpy (kJ/mol)
$\mathrm{C}-\mathrm{H}$	414
$\mathrm{C}-\mathrm{C}$	347
$\mathrm{C}=\mathrm{C}$	620
$\mathrm{C}-\mathrm{O}$	351
$\mathrm{C}=\mathrm{O}$	745
$\mathrm{O}-\mathrm{O}$	146
$\mathrm{O}=\mathrm{O}$	495
$\mathrm{O}-\mathrm{H}$	460

b) A carbon-carbon double bond is stronger than a carbon-carbon single bond (see table above); however, the double bond is not quite twice as strong as a single bond. Explain. (3 marks)
26. Draw correct Lewis structures for each of the following molecules/ions, and indicate both the electron domain geometry and molecular geometry for each:

Molecular/Ionic Formula	Lewis Structure	Electron Domain Geometry	Molecular Geometry
SF $_{4}$			
$\mathbf{I}_{3}{ }^{-}$			
$\mathbf{I F}_{5}$			
$\mathbf{N O}_{2}{ }^{+}$			
$\mathbf{B C l}_{3}$			

NOTE: ANSWER QUESTION 27 OR QUESTION 28, NOT BOTH (IF YOU ANSWER BOTH ONLY THE FIRST ONE WILL GET MARKED!)
27. Identify (circle and name) all the functional groups AND indicate (with an arrow) what the hybridization is (eg. $s p, s p^{2}, s p^{3}$) at each carbon, for the molecule below.

28. For each pair, circle the substance that has the higher boiling temperature and identify its predominant intermolecular force.
a) acetic acid and acetone (2-propanone)
b) pentane and 2-methylbutane
c) Kr and Ar
d) acetonitrile, $\mathrm{CH}_{3} \mathrm{CN}$ and propane, $\mathrm{C}_{3} \mathrm{H}_{8}$

Equations

$$
\begin{array}{lc}
\begin{array}{ll}
w=-P_{o p} \Delta V=-P_{o p}\left(V_{f}-V_{i}\right) & q_{\text {rxn }}+q_{\text {sol'n }}+q_{\text {cal }}=0
\end{array} \quad q_{x}=C_{x} \Delta T=C_{x}\left(T_{f}-T_{i}\right) \\
q_{x}=C_{x} \Delta T=m_{x} S_{x}\left(T_{f}-T_{i}\right) & \Delta E=E_{f}-E_{i}=q+w \\
\Delta_{r} H^{\circ}=\Sigma n_{p} \Delta_{f} H^{\circ}(\text { products })-\Sigma n_{r} \Delta_{f} H^{\circ}(\text { reactants }) \\
\Delta_{\text {univ }} S=\Delta_{\text {sys }} S+\Delta_{\text {surr }} S & \Delta_{r} S^{\circ}=\Sigma n_{p} S^{\circ}(\text { products })-\Sigma n_{r} S^{\circ}(\text { reactants }) \\
& \Delta_{r} G^{\circ}=\Sigma n_{p} \Delta_{f} G^{\circ}(\text { products })-\Sigma n_{r} \Delta_{f} G^{\circ}(\text { reactants }) \\
\Delta_{\text {sur }} S=-\frac{\Delta_{\text {sys }} H}{T_{\text {sur }}}=-\frac{\Delta_{r} H^{\circ}}{T_{\text {surr }}} & \Delta_{r} G^{\circ}=\Delta_{r} H^{\circ}-T \Delta_{r} S^{\circ} \quad \Delta_{r} G^{\circ}=-R T \ln K_{\text {eq }}
\end{array}
$$

For the reaction $a A+b B \rightarrow c C+d D$

$$
\text { rate }=k[A]^{x}[B]^{y}
$$

$$
\text { rate }=-\frac{1}{a} \frac{\Delta[A]}{\Delta t}=-\frac{1}{b} \frac{\Delta[B]}{\Delta t}=+\frac{1}{c} \frac{[C]}{\Delta t}=+\frac{1}{d} \frac{[D]}{\Delta t}
$$

$$
\begin{aligned}
& \begin{array}{l}
\ln \left(\frac{A}{A_{0}}\right)=-k t \quad t_{1 / 2}=\frac{0.693}{k} \quad \frac{1}{[A]}=\frac{1}{[A]_{0}}+k \\
\ln k=\ln A-E_{a} / R T \quad \ln \left(\frac{k_{2}}{k_{1}}\right)=-\frac{E_{a}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)
\end{array} \\
& \Delta E=h v \quad c=\lambda v \quad \lambda=\frac{h}{m v} \\
& r_{n}=\frac{\varepsilon_{0} h^{2}}{\pi m e^{2} Z} \times n^{2} \quad \text { where } n=1,2,3 \ldots \\
& E_{n}=-\left(\frac{m e^{4}}{8 \varepsilon_{0}^{2} h^{2}}\right)\left(\frac{Z^{2}}{n^{2}}\right) \\
& -\frac{h^{2}}{8 \pi^{2} m} \frac{d^{2} \psi}{d x^{2}}+V \psi=E \psi \\
& E_{\text {ionic }}=\frac{k q_{1} q_{2}}{r} \quad p H=-\log \left[H^{+}\right] \quad p K_{a}=-\log K_{a} \\
& p H=p K_{a}+\log \frac{\left[A^{-}\right]}{[H A]} \\
& A_{x} B_{y}(s) \leftrightarrow x A^{\gamma+}(a q)+y B^{x-}(a q) \\
& K_{\text {sp }}=\left[A^{\gamma+}\right]^{\chi}\left[B^{X-}\right]^{y} \\
& \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right\rfloor \\
& \mathrm{pH}+\mathrm{pOH}=14.00 \\
& K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{OH}]=\left[\mathrm{H}^{+}\right][\mathrm{OH}]=1.0 \times 10^{-14} \\
& 1 \mathrm{~J}=\mathrm{kg} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}} ; 1 \mathrm{cal}=4.184 \mathrm{~J} ; 1 \mathrm{Cal}=4.184 \mathrm{~kJ}=4184 \mathrm{~J}
\end{aligned}
$$

$\underset{\sim}{N}$	$\stackrel{\underset{\sim}{c}}{\substack{c}}$	$\xrightarrow{\infty}$	$\stackrel{\omega}{6} \pi \underset{\sigma}{6}$		¢ ¢ ¢ w	－エー
중		$\stackrel{\infty}{\underset{\sim}{\sim}} \sim \underset{\sim}{\infty}$	克き	N_{4}^{N}	$\bigcirc 0_{0}^{\circ}$	\％
NNㄹ		$\stackrel{\infty}{\underset{\sim}{\infty}} \prec \prec \underset{0}{0}$	$\begin{aligned} & \ddagger \\ & \underset{\sim}{\circ} \Omega \sim \end{aligned}$	河		
式》		$\stackrel{\sim}{N} N \pm$	$\underset{\infty}{ \pm}=\tilde{\sim}$	灾		
		N	$\left\lvert\, \begin{aligned} & \text { ü } \\ & \dot{0}< \\ & + \end{aligned}\right.$	ふ		
$\begin{array}{\|c} \bar{\sim} \\ \underset{\sim}{\sim} \\ \infty \\ \infty \end{array}$	$\underset{\substack{\infty \\ \underset{\sim}{\infty} \\ \infty \\ \hline}}{ }$			\}		
No	$\begin{aligned} & \underset{\sim}{\infty} \pi \\ & \stackrel{\sim}{\sim} \\ & 0 \end{aligned}$			㐫		$\underset{y}{3} \times$

SLNGNGTG HO GTGVL DIGOIEGd

