Chapter 6 - Trees

1

Some Definitions (cont'd)

- The height of a node n_{i} is the length of the longest path from n_{i} to a leaf. The height of a leaf node is 0
- The height of a tree is equal to the height of the root

3

5

Some Definitions

- Nodes with no children are leaves: (C,E,F,H,I), they are also called external nodes. Nodes which are not leaves are called internal nodes
- Nodes with the same parents are siblings: (B,C,D,E) and (G,H)
- A path from node n_{i} to node n_{j} is the sequence of directed edges from n_{i} to n_{j}
- The level or depth of a node n_{i} is the number of edges from the root to n_{i}. The depth of the root is 0

2

4

Height of a node

Some Definitions
DThe height of a node n, is the length of the longest path from n, to a leaf.
The height of a leaf node is 0

6

7

Binary Trees - An Informal

 Definition- A binary tree is a tree in which no node can have more than two children
- Each node has 0,1 , or 2 children

9

11
\qquad

Binary Tree

8

Binary Trees - A Recursive Definition

1. An empty structure is a binary tree
2. If T_{1} and T_{2} are binary trees, then the structure whose root has as its children the roots of $T_{1} \quad$ and T_{2} is also a binary tree 3 . Only structures generated by rules 1 and 2 are binary trees

10

Types of Binary Trees

- A binary tree in which each node has exactly 0 or 2 children is called a full binary tree - there are no degree 1 nodes
- A complete binary tree is a tree which is completely filled, with the possible exception of the bottom level, which is filled from left to right

12

Properties of BT

Next: find these max/min one by one

- Min/Max number of nodes in a binary tree whose height is h
- Min/Max height in a binary tree with n nodes
- Min/Max number of leaves/internal nodes/in a binary tree whose height is h

13
14

Minimum number of nodes with Height =h
 - Minimum number of nodes in a binary tree whose height is $h=3$

At least one node at each level
\rightarrow Minimum number of nodes is $4=3+1$

15
16

Max number of nodes with Height =h

Max \# of Nodes for a binary tree with Height h

- Maximum number of nodes?
- Maximum number of nodes in a binary tree whose height is h

> A complete binary tree
> $2^{0}+2^{1}+2^{2}+2^{3}=15=2^{4}-1$

- h=0 1 node
- $h=13$ nodes $=1$ (at level 0$)+2$ (at level 1)
- $h=27$ nodes $=1($ at level 0$)+2($ at level 1$)+4($ at level 2$)$
- $\mathrm{h}=315$ nodes $=1($ at level 0$)+2($ at level 1$)+4($ at level 2$)+8($ at level 3)
- For any h, $2^{0}+2^{1}+2^{2}+2^{3}+\ldots+2^{h}=2^{h+1}-1$

19

Maximum height in a binary tree with n nodes

- Maximum height?
- Maximum height in a binary tree with n nodes
$\mathrm{n}=1 \rightarrow \mathrm{~h}=0$
$\mathrm{n}=2 \rightarrow \mathrm{~h}=1$
$\mathrm{n}=3 \rightarrow \mathrm{~h}=2$ what does the tree's shape look like?

Max $\mathrm{h}=\mathrm{n}-1$

21

Max/Min height in a binary tree with n nodes

- Maximum height?
- Maximum height in a binary tree with n nodes
- Minimum height?
- Minimum height in a binary tree with n nodes

20

Min height in a binary tree with n nodes

- Minimum height?
- For a tree of height h, the number of nodes n satisfies the following:
$\mathrm{n}<=2^{\mathrm{h}+1}-1$
$n+1<=2^{n+1}$
$\log _{2}(n+1)^{<=} \log _{2} 2^{h+1}$
Thus $h>=\log _{2}(n+1)-1$
The minimal height of a binary tree with n nodes is: $\log _{2}(n+1)-1$ (round up)
- example, $\mathrm{n}=15$, min height $=3$
$-\mathrm{n}=14$, min height $=3$
$-\mathrm{n}=7$, min height $=2$
22

$2^{\text {h }}$

25

Max number of non-leaves for in a binary tree with height h?

- Maximum number of nodes ?
- Maximum number of nodes in a binary tree whose height is h
- n
-2^{0}
-2^{1}
-2^{n-1}

A complete binary tree
$2^{0}+2^{1}+. .+2^{n-1}=2^{n}-1$

27

Max number of non-leaves for in a binary tree with height h?

$2^{\text {h-1 }}$

26

Maximum number of internal nodes in a binary tree with height h

- Minimum number of internal nodes?
- Maximum number of internal nodes in a binary tree with height h

Minimum number of internal nodes in a binary tree with height h

- Minimum number of internal nodes?
- Maximum number of internal nodes in a binary tree with height h
-h

