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Abstract. We calculate ‘inherent structures’ (configurations corresponding to local potential
energy minima) in the ±J Ising spin glass over a wide range of temperature T in two and three
dimensions. We find that the T -dependence of the average value of the inherent-structure energy
E is strikingly similar to that shown recently for a glass-forming liquids. E decreases with T only
weakly at high T , but begins to decrease much more rapidly as the spin-glass transition temperature
Tsg is approached. As in the liquid, we find that the rapid decrease of E with decreasing T occurs in
the regime of T in which the relaxation of the spin autocorrelation function becomes increasingly
non-exponential. In addition, we show that the inherent structures of the spin glass can be used to
identify clusters of strongly correlated ‘frozen’ spins, and that an incipient percolating cluster of
these spins appears (within numerical error) at T = Tsg .

1. Introduction

Disordered systems cooled toward their glass transition temperature exhibit complex
dynamical behaviour. For example, the density autocorrelation function (the intermediate-
scattering function) of glass-forming liquids [1] and the spin autocorrelation function of spin
glasses [2–4] both decay exponentially at high temperature T , but non-exponentially at lower
T . For both systems these autocorrelation functions at large time t are well described by a
stretched exponential or Kohlrausch–Williams–Watts (KWW) function A exp[−(t/τ )β].

Recently, Sastry et al [5] showed that the development with decreasing T of non-
exponential relaxation in a glass-forming Lennard-Jones liquid is correlated with changes
in the system’s exploration of its potential energy landscape. In the landscape paradigm
as it applies to atomic liquids [6], the state point of the system (given by the 3N particle
coordinates) moves on a potential energy hypersurface in a (3N + 1)-dimensional space. This
surface contains many local minima. Basins can be drawn around each minimum such that
a steepest-descent minimization of the potential energy maps any state point in that basin to
the minimum of the basin. The configuration of the system at such a minimum is termed an
‘inherent structure’ of the liquid [7]. At sufficiently low T , the dynamics of the liquid can be
viewed as a combination of vibrational motion of the state point within a basin, and transitions
over barriers between different basins [8]. Sastry et al [5] calculated E, the average value of
the potential energy of the inherent structures of the liquid as a function of T . They reported
that the onset of non-exponential relaxation is correlated with a ‘crossover temperature’ below
which E decreases rapidly with decreasing T , and above which it decreases very slowly. A
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change in the T -dependence of the average enthalpy of inherent structures of a supercooled
liquid was found in earlier work by Jonsson and Anderson [9]. This phenomenon has also
been observed in results from simulation studies of water [10].

The Ising spin glass is an archetypal model of a glass-forming system with quenched
disorder [11]. Monte Carlo (MC) computer simulation studies of the ±J Ising spin glass have
shown that increasingly non-exponential relaxation develops in the paramagnetic phase as T

decreases toward the spin-glass transition temperature Tsg [3]. In the present work we calculate
the T -dependence of the average inherent-structure energy E for the ±J Ising spin glass to
determine whether in this system there also exists a correlation between the appearance of
complex relaxation dynamics and changes in the potential energy landscape explored by the
system. We find that for both dimension d = 2 and d = 3, there is a striking similarity between
the behaviour of E for the spin glass and that reported for liquid simulations. Our results are
also consistent with behaviour recently reported for p-spin models of spin glasses [12]. In
addition, we find that the results provide an opportunity to realize a quantitative description
of the spin-glass transition in terms of the occurrence of a percolation transition of correlated
‘frozen’ spins.

2. Methods

The ±J Ising spin glass is described by the Hamiltonian H = − ∑
〈ij〉 Jij sisj , on a square

(d = 2) or simple cubic lattice (d = 3). In our simulations the external magnetic field is zero.
Lattices are prepared by randomly assigning exchange interactions Jij = ±J to the edges of
the lattice, and placing on the vertices (sites) Ising spins s with values ±1. The sum in H

is taken over all nearest-neighbour (nn) pairs of sites. Our simulations are performed using
the heat-bath Monte Carlo algorithm [13] with helical boundary conditions for lattices of size
323 and 1282 (except where otherwise indicated). For this model the transition temperature
kTsg/J = 1.175 ± 0.025 (d = 3) [4] and 0 (d = 2) [14]; k is Boltzmann’s constant. As
a reference, it is useful to note the Curie temperature Tc of the corresponding ferromagnetic
Ising model, in which Jij = +J for all nn interactions: for d = 2, kTc/J = 2.269 [15] while
for d = 3, kTc/J = 4.511 54 [16]. All the results reported here use one specific random
arrangement of exchange interactions. We have confirmed that using a different random
arrangement of exchange interactions does not change our results.

In general, a steepest-descent minimization of the energy of a spin system proceeds
by successively locating and flipping that spin with the largest positive energy [17]. The
minimization procedure ends when only sites with negative energy remain; that is, when
flipping any single spin would raise the energy of the system. Due to the discrete nature of
the exchange interactions in the ±J Ising spin glass studied here, the site with the largest
positive energy is in general not unique, and so a steepest-descent minimization procedure is
not defined. Despite this, many configurations of the ±J Ising spin glass exist for which the
energy cannot be further decreased via single spin flips and we define these configurations to be
inherent structures of the system. Any procedure for quenching the energy of an equilibrium
configuration via a path in configuration space along which the energy decreases monotonically
will terminate in such an inherent structure. If the procedure is deterministic, then the potential
energy surface of the system in configuration space can be unambiguously partitioned into
basins surrounding inherent-structure minima.

With these considerations in mind, we choose the following procedure to map equilibrium
configurations of the ±J Ising spin glass to inherent structures: starting from a given
configuration of spins, a quench is carried out by setting T = 0 in the Boltzmann factor that
controls the probability for spin flips in heat-bath dynamics, and performing MC iterations until
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the energy no longer changes. SettingT = 0 in the Boltzmann factor has the result that spin flips
that lower the energy are always accepted, spin flips that raise the energy are never accepted,
and spin flips that keep the energy unchanged are accepted with probability 1/2. This algorithm
ensures that during the quench, the system energy decreases monotonically. The absence of
changes that increase the energy prevents the system from moving over barriers separating
one basin from another on the potential energy landscape. The system thus approaches a
local minimum of the potential energy, i.e. an inherent structure, and not the absolute global
minimum. To have a deterministic procedure, we update sites in ‘typewriter’ order, starting in
one corner of the system and proceeding from site to site, row by row. As a check, we have
also updated sites in random order, and confirmed that the results reported here for averaged
quantities are unchanged.

Our quench algorithm is not as efficient as might be expected of a steepest-descent
procedure. For example, we find that even after 105 Monte Carlo steps per spin (MCS),
infrequent small decreases of the energy are occasionally observed. Our quench algorithm
therefore generates an approximate value for the local minimum energy of a basin.
Extrapolation of our results to an infinite number of quench steps suggests that this estimate
is within 0.1% of the actual value. We also note that for the spin-glass model studied here,
the inherent-structure configuration corresponding to a local minimum of the energy is not in
general unique. At all times during our quench procedure, and in the final inherent structure,
a set of sites exists for which a change of spin state does not change the potential energy.

3. Temperature dependence of inherent-structure energy

For both d = 2 and 3 we study T -values from kT /J = 0.2 to 6.0. Simulations are carried out
first at the highest T ; simulations at successively lower T are then initiated using a configuration
generated at higher T . We fix the maximum time to attempt to equilibrate the system at all T

to 107 MCS. Relaxation times increase rapidly as T → Tsg and exceed this fixed equilibration
time at approximately kT /J = 1.0 for d = 2 and kT /J = 1.6 for d = 3. That is, the system
is in equilibrium above this T , but incompletely relaxed and out of equilibrium below. For
each T a ‘production’ stage is then initiated. The MC evolution of the system is continued at
the given T , and every 103 MCS the current configuration of the system is quenched using the
algorithm described above to obtain the corresponding inherent-structure energy. The number
of lattice updates required for the quenches ranges from 104 at high T to 105 at our lowest T .
The average inherent-structure energy E is calculated for each T from approximately 1000
quenches.

Figures 1 and 2 show E as a function of T for d = 2 and 3. As stated above, at low T

the relaxation time of the system exceeds our observation time and the system is no longer
in equilibrium. Equilibrium data are shown in figures 1 and 2 as filled circles, whereas data
points obtained for incompletely relaxed states are shown with open circles. We find that E

decreases weakly with T for high T , and then begins to decrease more rapidly with decreasing
T for T substantially above Tsg . We emphasize that this effect is well established in the
equilibrium data, and is not an artifact due to loss of ergodicity in the system. Comparison of
these figures with figure 1 of reference [5] and figure 2(b) of reference [9] shows that the change
in topography of the potential energy landscape with decreasing T in the Ising spin glass (as
measured by E) is qualitatively the same as that observed in simulations of glass-forming
liquids.

In the non-equilibrium regime, the decrease of E with T slows as T → 0, and (particularly
for d = 3) shows a crossover to a nearly constant value, again similarly to the liquid simulations.
This behaviour is due, at least in part, to freezing in of the configurational properties of
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Figure 1. Average inherent-structure energy E versus T for d = 2. Both equilibrium data (•) and
data points for incompletely relaxed states (◦) are shown.
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Figure 2. Average inherent-structure energy E versus T for d = 3. Both equilibrium data (•) and
data points for incompletely relaxed states (◦) are shown.

the system as ergodicity is lost. However, it is helpful to compare the low-T values of
E with estimates of the global ground-state energy E0 of the ±J Ising spin glass. E0 is,
by definition, a lower bound on E. In d = 2 dimensions, a recent study [18] found that
E0 = 1.401 93 ± 0.000 02, while in d = 3 dimensions, E0 = 1.7863 ± 0.0004 has been
reported [19]. Figures 1 and 2 show that if these estimates of E0 are correct (and assuming
that E is a monotonic function of T ), then the underlying equilibrium behaviour of E at low
T must be qualitatively the same as that shown in the plots. That is, the overall shape of the
E-versus-T curve can be described as approaching a constant both in the high- and low-T
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limits, continuously connected by a crossover region centred at a value of T above Tsg but
below Tc. The data exhibit an inflection point at kT /J ≈ 0.8 for d = 2 and kT /J ≈ 1.5 for
d = 3. We note that the equilibrium energy has an inflection point (i.e. a maximum of the
specific heat) at kT /J = 1.6 for d = 2 [20] and kT /J = 1.8 for d = 3 [3]. A model for the
functional variation of E with T has been proposed in reference [21].

Sastry et al [5] reported that the value of T where E for the liquid begins to change rapidly
as T decreases coincides with the T where relaxation becomes increasingly non-exponential,
and where the relaxation time begins to increase strongly. For the spin-glass model studied
here, Ogielski [3] showed that unambiguous non-exponential relaxation appears in the vicinity
of Tc. Figures 1 and 2 show that E is not yet varying strongly, relative to its overall variation,
at Tc. Hence, while a qualitative correspondence between changes in E and non-exponential
relaxation holds for both the spin glass and liquid, the details of this relationship differ for the
two systems [3, 22, 23].

We also note that the onset of a rapid decrease in E with decreasing T corresponds to the
emergence of other complex dynamical phenomena observed recently for the ±J Ising spin
glass. These phenomena include the appearance of a subset of sites having a spin relaxation rate
that increases as T decreases [24], and the appearance and growth of spatially heterogeneous
dynamics [25]. The emergence of spatially heterogeneous dynamics and enhanced mobility in
simulations of supercooled liquids has also been demonstrated to occur in the same region of T

in which E decreases rapidly with T , for both Lennard-Jones systems [26] and polymers [27].
Hence, for both spin glasses and molecular liquids, an interrelated set of complex dynamical
behaviour emerges and grows in strength as the topography of the potential energy landscape
explored by the system changes.

4. Percolation of ‘frozen’ spins near Tg

Comparison of individual spins in equilibrium and in quenched configurations yields insight
into the microscopic details of the spin-glass transition. In particular, this comparison provides
an opportunity to realize a quantitative description of the spin-glass transition in terms of a
percolation transition [28–30]. To achieve this, an equilibrium configuration at a given T is
selected, and a configuration X is generated from it by carrying out one MC step of the quench
procedure. The configuration X is similar to the equilibrium configuration, but individual sites
at which the spin state is locally unfavourable energetically (due to thermal fluctuations) have
relaxed to their preferred state. We then measure the local ‘overlap’ qi between a spin i in the
configuration X and in the corresponding fully quenched configuration Y , averaged over M

independent X, Y pairs:

qi = 1

M

M∑

m=1

s
Xm

i s
Ym

i

where m labels the pair. Independent X, Y pairs are generated by quenching independent
equilibrium configurations. Note that qi should be evaluated for a fixed configuration of
exchange interactions; if averaged over different interaction configurations, all qi will converge
to the same value.

With this definition for qi , qi = 0 when sX
i and sY

i are uncorrelated on average, and qi = 1
when sX

i = sY
i in every X, Y pair. We define a ‘frozen’ spin as any spin i for which qi = 1.

Note that a site for which qi = 1 can change state during the normal equilibrium updating of the
system. Hence, by ‘frozen’ we do not mean a site whose spin does not flip in equilibrium [30].
Rather, a frozen spin is a spin whose typical state in equilibrium (with transient thermal effects
approximately removed) is unchanged by quenching. However, we expect that frozen spins
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would tend to be sites having a particularly large relaxation time, and would thus be related to
the spatially heterogeneous dynamics of the spin glass described e.g. in reference [25]. Further
work is required to quantify this expectation.

On approach to Tsg , the number and connectivity of nearly frozen sites (i.e. sites with
qi-values approaching unity) should increase. To test this we evaluate the largest value q∗

of qi necessary to obtain an incipient spanning cluster of nearest-neighbour spins that have
qi � q∗. The T -dependence of q∗ for both d = 2 and d = 3 is shown in figure 3. The
dotted lines indicate linear extrapolations of q∗ to low T . For d = 3, this extrapolation gives
q∗ = 1 at kT /J ≈ 1.16, numerically indistinguishable from Tsg . Thus the data show that
the spin-glass transition for d = 3 is coincident, within numerical error, with a percolation
transition of frozen spins. For d = 2, extrapolation is less reliable because of the lack of
equilibrated data near kTsg/J = 0. However, we see from the dashed line that the d = 2 data
are also consistent with a percolation transition at T = 0. A percolation transition of frozen
spins at Tsg has been previously suggested [28–31].
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Figure 3. The threshold value q∗ of the overlap yielding an incipient spanning cluster, plotted
versus kT /J , for both d = 2 and d = 3. The dashed lines indicate linear extrapolation of the data
to low T . For d = 2 we fit to different numbers of low-T data points in order to estimate confidence
limits for the T at which q∗ = 1. The data presented in this figure for d = 3 are generated from a
483 system.

5. Discussion

Our results confirm the universality expected for landscape descriptions of glass-forming
systems, regardless of whether the disorder and frustration present in the system is quenched,
as in spin glasses, or annealed, as in liquids. They also suggest that the connection between
landscape behaviour and non-exponential dynamics may be universal. Our observation of a
percolating cluster of frozen spins at Tsg suggests that evaluation of a suitably defined overlap
function for liquids may also prove fruitful. We also remark that the changing topography of
the potential energy landscape with T in both spin glasses and liquids should have implications
for studies of aging in glasses following temperature quenches [32].
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