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Social organisms form striking aggregation patterns, displaying co-
hesion, polarization, and collective intelligence. Determining how
they do so in nature is challenging; a plethora of simulation studies
displaying life-like swarm behavior lack rigorous comparison with
actual data because collecting field data of sufficient quality has
been a bottleneck. Here, we bridge this gap by gathering and anal-
yzing a high-quality dataset of flocking surf scoters, forming well-
spaced groups of hundreds of individuals on the water surface. By
reconstructing each individual’s position, velocity, and trajectory, we
generate spatial and angular neighbor-distribution plots, revealing
distinct concentric structure in positioning, a preference for neigh-
bors directly in front, and strong alignment with neighbors on each
side. We fit data to zonal interaction models and characterize which
individual interaction forces suffice to explain observed spatial pat-
terns. Results point to strong short-range repulsion, intermediate-
range alignment, and longer-range attraction (with circular zones),
as well as a weak but significant frontal-sector interaction with one
neighbor. A best-fit model with such interactions accounts well for
observed group structure, whereas absence or alteration in any one
of these rules fails to do so. We find that important features of ob-
served flocking surf scoters can be accounted for by zonal models
with specific, well-defined rules of interaction.
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Many social organisms exhibit cohesive, self-organized group
motion with visually compelling aggregation patterns (1).

Investigating how behavior at one scale (the individual) engen-
ders behavior on the higher scale (e.g., the swarm) has spawned
a rich field of research, driven largely by simulation and mod-
eling of both physical (2–4) and biological (5–9) systems. One
consensus is that even simple individual rules can give rise to
complex group behavior. However, whether/which groups have
leaders, how neighbors are surveyed by each member, what is the
relative effect of local versus global information, and whether
interactions affect speed, turning angles, acceleration, or all of
the above is unclear for most flocks. What underlying rules of
behavior are at play in real swarms or flocks remains a long-
standing question that motivates our study.
Given the rich diversity of theoretical models that assume dis-

tinct forces and reactions, it is of great interest to assess which
correspond to actual behavior in nature. Yet simulation studies
alone cannot tackle this question because patterns similar to ob-
servations can be generated by different model mechanisms. In-
stead, this question requires a close comparison between real
andmodel social aggregates andmeasurement of what individuals
are actually doing within large groups, as is our focus here.
Technological difficulties in tracking individuals accurately in

fast-moving groups presents a challenge (10). Recovering the
spatial structure of large groups is hampered by obstruction of
the view into the group interior (occlusion) in three dimensions,
a problem that is compounded by large group sizes. Yet, without
complete reconstruction of positions, individual trajectories can-
not be teased out from successive images of the group. Because of
these limitations, previous empirical work on birds (11–13),
insects (14), and fish (15) has been restricted to small groups, and
resulted in smaller, noisier datasets.
Advances in digital imaging have led to refinement in both the

spatial and temporal dimension of the data. Automated tracking

of (up to 120) locusts in a 2D laboratory setting has revealed
density-dependent transitions from disordered groups to highly
aligned groups (16), and cannibalistic interactions driving col-
lective motion (17). Recent work (18) on huge starling flocks
(>1,000 birds) increased by an order of magnitude the size of
groups considered over previous studies. There, average local
swarm velocities (rather than individual tracks) could be quan-
tified because of occlusion, speed, and numerosity of the birds.
Other recent work (19, 20) using automated tracking software
for schooling fish has led to accurate long-time trajectory re-
construction for individuals in small groups (four to eight fish).
Long-distance trajectories have also been constructed for a flock
of up to 10 homing pigeons by using GPS tracking (10). Here, we
report on a dataset and modeling of flocks of hundreds of surf
scoters (Melanitta perspicillata).
Given a good dataset, it is not always clear a priori which

model framework is suitable for testing hypothetical mechanisms
of interaction against the data. Two main approaches exist: (i)
topological-distance models, in which each (interior) individual
interacts with a fixed number of neighbors, versus (ii) metric-
distance models, in which the individual interacts with all neigh-
bors within a certain distance. Many metric-distance models are
“zonal”; that is, interaction forces are implemented through
a series of layered zones (repulsion, alignment, attraction, respec-
tively) around a given individual. The zone in which a neighbor is
found determines which of these interactions takes place, and
the shape and structure of zones reflect sensory characteristics
of each individual. Zonal models have revealed much about col-
lective motion: dynamic switching between collective patterns (8),
effects of leadership on uninformed members (9), and how group
size (21, 22), number of neighbors (6, 21), and heterogeneity in
members (23) influence emergent group properties such as shape,
density, and polarization of the group. Apart from evidence for
topological interactions in airborne starling flocks (18), and em-
pirical evidence for attraction/repulsion zones in fish schools (24),
the validity of zonal models for different animal groups has not
been carefully assessed thus far.
We report here combined efforts of collecting and analyzing

data for large flocks of scoters, and modeling the most important
features of such flocks derived from the data. As shown here, this
work has enabled us to pinpoint specific rules underlying ob-
served features. The results suggest that zonal models based on
metric distance are an appropriate tool for generating insight
into the mechanisms of collective motion.

Results
Surf scoters overwinter in shallow coastal areas of North America
in flocks numbering hundreds of individuals. Flocks collectively
moving on the water surface before diving to forage on mollusks
(25) exhibit a high degree of cohesion, polarization, well-defined
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spacing structure, and synchrony in dives (26, 27) (Fig. 1A and
SI Text).
In our data, individuals have a mean nearest-neighbor distance

(NND) of 1.45 body lengths (BL) with SD 0.25 BL, and a mean
speed of 2.0 BL/s. While collecting data, we noted that ducks
occasionally accelerate/decelerate and are visually alert to their
neighbors (in 360°), displaying frequent head turns. Kleptoparasitic
gulls (28) (primarily glaucous-winged gulls, Larus glaucescens) fre-
quently attack scoters, robbing themofmussels (Mytilus edulis) (26).
We observed scoters actively avoiding encroaching gulls by form-
ing avoidance zones (“vacuoles”) within the aggregate (Fig. S1).
Noteworthy features of the dataset we collected are a natural

setting using native undomesticated birds, and minimal effect of
measurement on behavior, large groups (up to ≈200), and con-
venient geometry (2D, well-spaced floating flock, versus 3D flying
swarm). The high signal-to-noise ratio allows us to reconstruct
individual trajectories accurately.
The observed mean neighbor density and angular deviation ob-

tained by pooling the data are depicted in the 2D plot (Fig. 2 A and
B). The neighbor density (Fig. 2A) reveals an empty disk (dark
blue), surrounded by ring of high density (red) at 1.45 BL, and
further clouds of lower density (yellow). The highest density (dark
red) occurs at a preferred distance directly in front/behind the focal
bird (Fig. 4C). A few “echo” waves are seen in radial neighbor
density plots (Fig. 4D). These observations imply a higher proba-
bility of finding a neighbor at preferred distance and angle.
The mean angle between headings (denoted “absolute devia-

tion”) is shown in Fig. 2B. At close distances (< ≈1.3 BL), de-
viation is strongly angle-dependent (high in front/behind: dark
red; low at left/right: blue): That is, birds align roughly in parallel
with neighbors alongside, but deviate from neighbors in the axis
of motion. At preferred distances (≈1.5 BL), deviation is low at
all angles (minimal at left/right). At larger distances (>2 BL),
deviation increases as correlation decays.
As shown in Fig. 2, neighbor distributions have circular reflective

symmetry due to mutual neighbor pairs. We asked whether the
front/back high deviation stems from interactions from behind

(avoiding aggressive neighbors), from the front (collision avoid-
ance), or both. The deviation from themean velocity field caused by
a neighbor too close in front was higher than that of a neighbor too
close in back, suggesting that a frontal response dominates (further
discussion in SI Text).
Taken together, Fig. 2 A and B suggest that the dominant dis-

tance-dependent interaction occurs along the axis of motion: Indi-
viduals preferentially move in line with those in front of them, and
repel strongly, by deviating sideways, if too close to that neighbor.
In contrast, alignment with neighbors is strongest for neighbors at
left/right. Importantly, the increase in deviation with radial distance
in Fig. 2B gives direct evidence for the existence of a local align-
ment force, for if alignment was instead imparted solely by global
information (e.g., the direction to the foraging site), deviation
would be uncorrelated with distance from a given individual.

Fig. 1. A typical flock of M. perspicillata (surf scoter) moving on the water surface showing a raw image (A) and an image filtered and thresholded to isolate
individuals and eliminate noise (B). (C) Validation of objects by overlay on original image; centers of mass for individuals were calculated. (D) Correction for
perspective and transformation to ”real” positions, calculated velocities (gray lines), and correction for drift currents.

Fig. 2. Results of data analysis: Density maps for position and orientation of
neighbors relative to a typical individual (central white disk, with ”beak” in
front) based on pooled data excluding flock edges. Radial distances of 1, 2,
and 3 BL are superimposed. (A) Density of neighbor positions (normalized to
have an average value of 1) showing a preference for frontal neighbors. (B)
Relative neighbor orientation showing high deviation in front/behind versus
low at left/right flanks. Deviation increases radially outwards, indicating
local alignment interaction (as distinct from alignment to common goal).
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Results of aggregate data analysis were fitted to a hierarchy of
individual-based zonal models (5–9, 22) with space around an
individual partitioned into zones of repulsion, alignment, and
attraction. The clearly observed concentric zones in the data
motivated this choice of model framework, and observed zone
radii were used as input parameters in the zonal models. For x =
distance to neighbor, we assumed piecewise linear pairwise-in-
teraction forces with magnitude g(x) normalized (−1 ≤ g(x) ≤ 1),
and weighted by tunable parameters, ωk (k = attraction, re-
pulsion, etc.). For n individuals with position x→i and velocity v→i
(i = 1, . . . , n), our Lagrangian model (4, 29) is

dx→i
dt

¼ v→i;

dv→i
dt

¼ f
→
i;aut þ f

→
i; int þ ξ

→
i

with f
→
i; int the attraction/alignment/repulsion force, f

→
i;aut an au-

tonomous self propulsion, and ξ
→
i (Gaussian) noise. Environ-

mental cues are included by setting f
→
i;aut ¼ a→− γv→i, with a→ an in-

trinsic velocity toward a foraging goal and γv→i a drag as in ref. 4.
The choice of this nonconstant velocity model version stems
from our field observations that individual ducks accelerate from
time to time. The motion of each model duck is based on the
sum of forces averaged over neighbors in each zone, except for
frontal interaction, described below.
Behavior of the model depends strongly on the assumptions

about the sum of interaction forces, f
→
i; int. We tested a sequence

of models from simple attraction/repulsion (A/R) in concentric
rings to more detailed variants, with/without blind angles, and
with a hierarchy of decisions within the zones (8, 9).
Simple A/R alone (7, 30–32) (Fig. 3A) captures the radial dis-

tribution of neighbors but fails to account for angular preference
for neighbors in front. Including alignment forces (attraction/
repulsion/alignment, A/R/A model; Fig. 3B) (4, 6, 8, 22) improves
the match but fails to account for the observed bias in the angular
distribution over a wide range of parameters we tested (using op-
timization similar to the procedure described below and in SI Text).
We asked what influences could account for the observed frontal

bias of neighbors. Inclusion of a rear blind sector (6, 8) in the A/R/A
model was rejected, because it led to increased density of neighbors
at left/right (Fig. 3C), in contrast to the front/back bias observed in
the data. (Observed frequent head-turning of individual birds also
suggests that blind angles are unlikely.) Weighting A/R magnitude
toward the front in A/R/A creates frontal preference with an un-
realistic elliptical repulsion zone (Fig. 3D) contrary to the observed
pattern in Fig. 2A and, hence, was rejected. Alternatively, modifying
the structure of attraction zones in A/R/A from circular to elliptical
(elongated to the front by up to a factor of 2) had no effect on
resulting neighbor distributions (i.e., Fig. 3B).
Rather, including an A/R frontal interaction with (up to) one

nearest neighbor in a sector of θ ± 30° (Fig. 4A) shows a good fit
(Fig. 3E) to observed neighbor distribution and angular prefer-
ence. The qualitative agreement is robust to parameter variations,
as discussed further on. Fig. 4A summarizes the best candidate
model, suggesting that individuals within flocks balance A/R/A
interactions in all directions, but also attract/repel from the single
nearest neighbor directly ahead.
To determine the relative contributions of interactions (attrac-

tion, repulsion, alignment, frontal interaction) and noise to ob-
served behavior, we write each in terms of a “normalized” force,
weighted by relative strengths,

f
→
i; int ¼ ωrep f

→
i; rep þ ωatt f

→
i;att þ ωal f

→
i;al þ ωfront f

→
i; front;

where ωrep, ωatt, ωal, and ωfront are weighting parameters to be
fitted. (See SI Text for details.)

We carried out parameter optimization to match model pre-
dictions to data. Our goodness-of-fit measure is the sum of two
errors: the mean-squared difference of observed and predicted
(i) 2D neighbor densities (Fig. 2A and 3E, respectively) and (ii)
density as a function of circumferential position in an annulus at
the preferred distance (Fig. 4C). Ranges for ω values were first
established by numerical exploration, then optimized by a ran-
dom-search algorithm with the above objective criterion. Opti-
mal parameters (Fig. 4B) produce the distribution of Fig. 3E and
radial plots (solid curves in Fig. 4 C and D) that match the
corresponding observations (Fig. 2A, and dotted curves in Fig. 4
C and D). Optimality was verified by varying each parameter
about its optimum (Fig. 4B Inset).
Optimization reveals that short-range repulsion is an order of

magnitude greater than net attraction in the attraction zone. In-
terestingly, although ωfront is two orders of magnitude lower than
repulsion, and clearly a relatively weak effect, it has a noticeable
effect on neighbor angular preference. The optimal alignment
parameterωal is the same order as themagnitude of self-propulsion
(ja→j ¼ 0:5 in simulations). Our results suggest that individuals
balance the tendency to “follow-the-leader” and align with neigh-

Fig. 3. Results of model predictions: Neighbor distribution plots (as in Fig. 2A)
for a sequence of models (details in SI Text). Simple attraction-repulsion (A/R)
(A), with alignment (A/R/A) (B), A/R/A with 45° blind angle in back (C), A/R/A
with angle-dependent weighting exp(w cos(θij))/ exp(w), where θij is the rela-
tive angle between neighbors, and w = 2 is a weighting parameter (D), A/R/A
model with additional frontal interaction, (θ ± 30) (E). Each distribution was
calculated from 20 model simulations of 100 individuals, with random initial
conditions. Radial distances of 1, 2, and 3 BL are superimposed.
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bors with their response to external cues (direction to foraging site)
and strong spacing behavior.

Discussion
In this paper we collected, digitized, and analyzed a large dataset
for flocks of surf scoters and used it to reverse-engineer un-
derlying individual rules. Our work bridges the gap between
previous studies by accurately reconstructing individual tracks
(and hence velocities, neighbor distances, etc.) in groups num-
bering hundred(s) of members.
Our dataset allowed for deeper probing of individual rules

underlying group behavior. Accurate reconstruction of individual
positions, trajectories, and velocities reveal a distinct 2D struc-
ture (“heat map”) in relative spatial distribution of neighbors.
This structure indicates a preference for neighbors directly be-
hind and in front (at ≈1.5 BL away), alignment with neighbors
on each side, and active avoidance of those in front (by sideways
diversion). Such conclusions would be difficult to quantify with-
out the individual tracking reported herein.
Comparing such observations against predictions of a sequence

of Lagrangian models, we rejected null hypotheses (simple A/R,
blind angles, frontal weighting of interactions) that disagreed
qualitatively with the dataset. An A/R/A model complemented by
weak frontal interactions predicts behavior that is consistent with
observations. As shown in ref. 31, general properties of A/R forces
(e.g., monotonicity, relative magnitudes, etc.) matter more than
specific details in determining cohesiveness and spacing in groups.
Using piecewise linear forces with discrete zones simplified the

parametrization of the model because zone radii were directly
observable in the data.
Optimization of parameters (relative weights of forces) reveals

that repulsion dominates over other forces, with attraction and
alignment tendencies roughly of equal (and lower) magnitudes.
Overall, our work illustrates that zonal models can lead to insight
about how individual rules lead to observed flock behavior.
Most empirical studies of animal groups report structure in both

nearest-neighbor spacing and relative bearings. In fish schools, in-
dividuals are observed to preferentially occupy either lateral (19, 33)
or diagonal positions (11, 34) relative to neighbors, avoiding posi-
tions directly in front or behind. Similarly, observations of airborne
bird flocks (12, 18) reveal avoidance of nearest neighbors directly
in the path of an individual’s motion. A number of mechanisms
have been put forth to explain this angular structure (35), including
hydro/aerodynamic benefits, anisotropic vision, or avoidance of col-
lisions caused by changing speeds.
Our findings for 2D flocks contrast with the above, in that we

observe, on average, a peak of density directly in front/behind
each individual. Given this departure from previous observations,
one might ask why such a difference arises. One explanation is
that surface-swimming surf scoters move much more slowly than
schooling fish or airborne birds. This fact implies a reduced risk of
collision with those just ahead, and so a reduction in the penalty
for being too close to a neighbor in the path of motion. A second
factor is that our flocks move in 2D on the water surface, so that
aero/hydrodynamic effects are bound to be distinct from those
encountered by flying birds and swimming fish. Thus, aero-
dynamic benefits associated with bird flight should not be ex-

Fig. 4. Individual behavior inferred by matching model to data. Individuals obey a hierarchy of repulsion, alignment, and attraction to neighbors in zones
shown in A, supplemented by A/R with one neighbor in a frontal interaction sector. (B) Relative magnitudes of repulsion, attraction, alignment, and frontal
forces (ωk) obtained by optimizing the model fit to data (logarithmic scale). (B Inset) Evidence for optimality shown by varying each parameter about its best-
fit value. Ranges explored were −50% to +50% of the optimal parameter set (ωrep = 8.5, ωatt = 1.2, ωal = 0.74, ωfront = 0.08, and ωξ = 0.37). (C) Density of
neighbors vs. angle −90° ≤ θ ≤ 90° at 1.5 BL (the preferred distance) showing good agreement between model (solid) and data (dotted) (0° is to the front). (D)
A comparison of radial neighbor density for data (dotted) and model (solid).
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trapolated to such flocks. Because the impact due to collisions is
less significant, and the threat of predation or parasitism by gulls
more imminent, placing a neighbor directly ahead may be a more
beneficial “selfish herd” strategy in areas near the foraging sites
that tend to be frequented by gulls. Finally, the occlusion of the
visual field caused by a frontal neighbor is compensated by fre-
quent head-turning, a behavior that could be less suitable in
rapid flight.
Although the ecological implications of such behavior remains

to be more fully explored, we conjecture that the tendency to
follow the leader could facilitate targeted foraging on localized
patches of sessile prey (27). Further, attraction to flockmates
likely affords protection (e.g., from kleptoparasitic gulls; ref. 26),
while maximizing reliance on informed members at the edge of
the group (9). The observed spacing patterns of scoters could
facilitate orderly “queuing” that promotes more efficient foraging
or could be related to other elements of locomotion or flock dy-
namics. Alignment, spacing, and sequential/synchronous dives
could potentially decrease the chance of underwater interference
with flockmates, influence diving energetics, or facilitate extract-
ing prey from the substrate. Coordination of underwater diving
activities among individuals remains an important area for em-
pirical research.
Evidence from casual observations suggests that flocking para-

meters (magnitudes of forces and sizes of zones) are adaptable,
adjusting dynamically to the environment and changing state of the
flock. We observe wider interspecies repulsion zones (e.g., when
gulls infiltrate the flock). Alignment is lost and spacing changes
between foraging bouts. In gathering this data, we observed occa-
sional flock transitions (polarized, nonpolarized, etc.), implying
that group parameters likely vary dynamically over a range of values
depending on circumstances (see also ref. 8).

The data analysis tools we have developed here can be used to
study other swimming flocks (e.g., eider ducks, Barrow’s golden-
eyes). The comparative analysis of species-specific differences
would address questions on the universality (or specificity) of in-
dividual rules, how they vary with conditions, within and between
groups. The continued closemarriage of theoretical modeling and
empirical data will be indispensable as such questions are tackled.

Materials and Methods
Time series of 2D flocks at Burrard Inlet, Vancouver, BC, were recorded by
oblique overhead photography. A fixed landmark (the edge of a dock) de-
fined coordinates for distance calibration. Data were gathered over a 2-wk
period in March 2008, and 13 separate sequences of group motion were
reconstructed. Each sequence was comprised of 25–137 frames at 3 frames
per second, with up to 200 individuals per frame. In total, >75,000 positions
were reconstructed. Frames were digitized (Fig. 1 A–C), and positions in
successive frames were matched by using customized particle-tracking soft-
ware, giving a timecourse of individual positions, velocities, and headings
(Fig. 1D). Images were corrected for perspective distortion and velocities
were adjusted for water currents by using intrinsic fluid markers. Edge in-
dividuals were excluded from the analysis. Relative positions (Fig. 2A) and
heading deviations (Fig. 2B) were computed. (See SI Text for a detailed
description of methods. Also, see Figs. S2–S8, Table S1, Movie S1, Movie S2,
and Movie S3 for additional details.)
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