Calculus 112 Practice Problems

Section 10.1 Problems \#11, \#15, \#16

11. Let $f(x)=\sqrt{1-x}=(1-x)^{1 / 2}$. Then $f^{\prime}(x)=-\frac{1}{2}(1-x)^{-1 / 2}, f^{\prime \prime}(x)=-\frac{1}{4}(1-x)^{-3 / 2}, f^{\prime \prime \prime}(x)=-\frac{3}{8}(1-x)^{-5 / 2}$.

So $f(0)=1, f^{\prime}(0)=-\frac{1}{2}, f^{\prime \prime}(0)=-\frac{1}{4}, f^{\prime \prime \prime}(0)=-\frac{3}{8}$, and

$$
\begin{aligned}
P_{3}(x) & =1-\frac{1}{2} x-\frac{1}{4} \frac{1}{2!} x^{2}-\frac{3}{8} \frac{1}{3!} x^{3} \\
& =1-\frac{x}{2}-\frac{x^{2}}{8}-\frac{x^{3}}{16} .
\end{aligned}
$$

15. Let $f(x)=\sin x$.

Then $f^{\prime}(x)=\cos x, f^{\prime \prime}(x)=-\sin x$, and $f^{\prime \prime \prime}(x)=-\cos x$, so the Taylor polynomial for $\sin x$ of degree three about $x=-\pi / 4$ is

$$
\begin{aligned}
P_{3}(x)= & \sin \left(-\frac{\pi}{4}\right)+\cos \left(-\frac{\pi}{4}\right)\left(x+\frac{\pi}{4}\right) \\
& +\frac{-\sin \left(-\frac{\pi}{4}\right)}{2!}\left(x+\frac{\pi}{4}\right)^{2}+\frac{-\cos \left(-\frac{\pi}{4}\right)}{3!}\left(x+\frac{\pi}{4}\right)^{3} \\
= & \frac{\sqrt{2}}{2}\left(-1+\left(x+\frac{\pi}{4}\right)+\frac{1}{2}\left(x+\frac{\pi}{4}\right)^{2}-\frac{1}{6}\left(x+\frac{\pi}{4}\right)^{3}\right) .
\end{aligned}
$$

16. Let $f(x)=\ln \left(x^{2}\right)$. Then $\ln \left(1^{2}\right)=\ln 1=0$.

Then $f^{\prime}(x)=2 x^{-1}, f^{\prime \prime}(x)=-2 x^{-2}, f^{\prime \prime \prime}(x)=4 x^{-3}$, and $f^{(4)}(x)=-12 x^{-4}$.
The Taylor polynomial of degree 4 for $f(x)=\ln \left(x^{2}\right)$ about $x=1$ is

$$
\begin{aligned}
P_{4}(x) & =\ln \left(1^{2}\right)+2 \cdot 1^{-1}(x-1)+\frac{-2 \cdot 1^{-2}}{2!}(x-1)^{2}+\frac{4 \cdot 1^{-3}}{3!}(x-1)^{3}+\frac{-12 \cdot 1^{-4}}{4!}(x-1)^{4} \\
& =0+2(x-1)-(x-1)^{2}+\frac{4}{6}(x-1)^{3}-\frac{12}{24}(x-1)^{4} \\
& =2(x-1)-(x-1)^{2}+\frac{2}{3}(x-1)^{3}-\frac{1}{2}(x-1)^{4} .
\end{aligned}
$$

