Section 11.6 Problems #9, #11, #15

9. Let C(t) be the current flowing in the circuit at time t, then

$$\frac{dC}{dt} = -\alpha C$$

where $\alpha > 0$ is the constant of proportionality between the rate at which the current decays and the current itself.

The general solution of this differential equation is $C(t) = Ae^{-\alpha t}$ but since C(0) = 30, we have that A = 30, and so we get the particular solution $C(t) = 30e^{-\alpha t}$.

When t = 0.01, the current has decayed to 11 amps so that $11 = 30e^{-\alpha 0.01}$ which gives $\alpha = -100 \ln(11/30) = 100.33$ so that,

$$C(t) = 30e^{-100.33t}$$
.

11. (a) If I is intensity and l is the distance traveled through the water, then for some k > 0,

$$\frac{dI}{dl} = -kI$$

(The proportionality constant is negative because intensity decreases with distance). Thus $I = Ae^{-kl}$. Since I = A when l = 0, A represents the initial intensity of the light.

(b) If 50% of the light is absorbed in 10 feet, then $0.50A = Ae^{-10k}$, so $e^{-10k} = \frac{1}{2}$, giving

$$k = \frac{-\ln\frac{1}{2}}{10} = \frac{\ln 2}{10}.$$

In 20 feet, the percentage of light left is

$$e^{-\frac{\ln 2}{10} \cdot 20} = e^{-2\ln 2} = (e^{\ln 2})^{-2} = 2^{-2} = \frac{1}{4},$$

so $\frac{3}{4}$ or 75% of the light has been absorbed. Similarly, after 25 feet,

$$e^{-\frac{\ln 2}{10} \cdot 25} = e^{-2.5 \ln 2} = (e^{\ln 2})^{-\frac{5}{2}} = 2^{-\frac{5}{2}} \approx 0.177.$$

Approximately 17.7% of the light is left, so 82.3% of the light has been absorbed.

15. (a) Since the rate of change of the weight is equal to

$$\frac{1}{3500}$$
 (Intake – Amount to maintain weight)

 $\frac{dW}{dt} = -\frac{1}{175} \left(W - \frac{I}{20} \right),$

we have

 $\frac{dW}{dt} = \frac{1}{3500}(I - 20W).$

we separate variables and integrate:

 $\int \frac{dW}{W - \frac{I}{20}} = -\int \frac{1}{175} \, dt.$ $\ln \left| W - \frac{I}{20} \right| = -\frac{1}{175} t + C$ $W - \frac{I}{20} = Ae^{-\frac{1}{175}t}$

or in other words

Thus we have

so that

$$W = \frac{I}{20} + Ae^{-\frac{1}{175}t}$$

Let us call the person's initial weight W_0 at t = 0. Then $W_0 = \frac{I}{20} + Ce^0$, so $C = W_0 - \frac{I}{20}$. Thus

$$W = \frac{I}{20} + \left(W_0 - \frac{I}{20}\right) e^{-\frac{1}{175}t}.$$

(c) Using part (b), we have $W = 150 + 10e^{-\frac{1}{175}t}$. This means that $W \to 150$ as $t \to \infty$. See Figure 11.30.

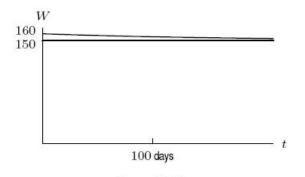


Figure 11.30