Calculus 112 Practice Problems

Section 5.2 Problems #4-8, #15, #17, #27, #35

4. We know that

$$\int_{-10}^{15} f(x)dx = \text{Area under } f(x) \text{ between } x = -10 \text{ and } x = 15.$$

The area under the curve consists of approximately 14 boxes, and each box has area (5)(5) = 25. Thus, the area under the curve is about (14)(25) = 350, so

$$\int_{-10}^{15} f(x)dx \approx 350$$

5. With $\Delta x = 5$, we have

Left-hand sum = 5(0 + 100 + 200 + 100 + 200 + 250 + 275) = 5625,

Right-hand sum = 5(100 + 200 + 100 + 200 + 250 + 275 + 300) = 7125.

The average of these two sums is our best guess for the value of the integral;

$$\int_{-15}^{20} f(x) \, dx \approx \frac{5625 + 7125}{2} = 6375.$$

- 6. The graph given shows that f is positive for $0 \le t \le 1$. Since the graph is contained within a rectangle of height 100 and length 1, the answers -98.35 and 100.12 are both either too small or too large to represent $\int_0^1 f(t)dt$. Since the graph of f is above the horizontal line y = 80 for $0 \le t \le 0.95$, the best estimate is 93.47 and not 71.84.
- 7. We estimate $\int_{0}^{40} f(x) dx$ using left- and right-hand sums:

Left sum =
$$350 \cdot 10 + 410 \cdot 10 + 435 \cdot 10 + 450 \cdot 10 = 16,450$$
.

Right sum = $410 \cdot 10 + 435 \cdot 10 + 450 \cdot 10 + 460 \cdot 10 = 17,550$.

We estimate that

$$\int_0^{40} f(x)dx \approx \frac{16450 + 17550}{2} = 17,000.$$

In this estimate, we used n = 4 and $\Delta x = 10$.

8. We take $\Delta x = 3$. Then:

Left-hand sum =
$$50(3) + 48(3) + 44(3) + 36(3) + 24(3)$$

= 606
Right-hand sum = $48(3) + 44(3) + 36(3) + 24(3) + 8(3)$
= 480
Average = $\frac{606 + 480}{2} = 543$.

 $\int^{15} f(x) \, dx \approx 543.$

So,

15. Since $\cos t \ge 0$ for $0 \le t \le \pi/2$, the area is given by

Area
$$= \int_0^{\pi/2} \cos t \, dt = 1.$$

The integral was evaluated on a calculator.

17. A graph of $y = \ln x$ shows that this function is non-negative on the interval x = 1 to x = 4. Thus,

Area =
$$\int_{1}^{4} \ln x \, dx = 2.545$$
.

The integral was evaluated on a calculator.

27. (a) y y = f(x)2 A_1 A A_2 $^{-2}$

(b)
$$A_1 = \int_{-2}^{0} f(x) dx = 2.667.$$

 $A_2 = -\int_{0}^{1} f(x) dx = 0.417.$
So total area = $A_1 + A_2 \approx 3.08$
 $A_2 + A_2$ is accurate only to 2 d

$$f(x) \, dx = 0.417.$$

84. Note that while A_1 and A_2 are accurate to 3 decimal places, the quoted value for $A_1 + A_2$ is accurate only to 2 decimal places.

(c)
$$\int_{-2}^{1} f(x) dx = A_1 - A_2 = 2.250.$$

35. See Figure 5.26.

