Calculus 112 Practice Problems

Section 5.3 Problems \#18, \#27, \#39

18. (a) If the level first becomes acceptable at time t_{1}, then $R_{0}=4 R\left(t_{1}\right)$, and

$$
\begin{aligned}
\frac{1}{4} R_{0} & =R_{0} e^{-0.004 t_{1}} \\
\frac{1}{4} & =e^{-0.004 t_{1}}
\end{aligned}
$$

Taking natural logs on both sides yields

$$
\begin{aligned}
\ln \frac{1}{4} & =-0.004 t_{1} \\
t_{1} & =\frac{\ln \frac{1}{4}}{-0.004} \approx 346.574 \text { hours. }
\end{aligned}
$$

(b) Since the initial radiation was four times the acceptable limit of 0.6 millirems/hour, we have $R_{0}=4(0.6)=2.4$. The rate at which radiation is emitted is $R(t)=R_{0} e^{-0.004 t}$, so

$$
\text { Total radiation emitted }=\int_{0}^{346.574} 2.4 e^{-0.004 t} d t
$$

Evaluating the integral numerically, we find that 450 millirems were emitted during this time.
27. Since W is in tons per week and t is in weeks since January 1,2005 , the integral $\int_{0}^{52} W d t$ gives the amount of waste, in tons, produced during the year 2005 .

$$
\text { Total waste during the year }=\int_{0}^{52} 3.75 e^{-0.008 t} d t=159.5249 \text { tons. }
$$

Since waste removal costs $\$ 15 /$ ton, the cost of waste removal for the company is $159.5249 \cdot 15=\$ 2392.87$.
39. Since $t=0$ in 1975 and $t=35$ in 2010 , we want:

$$
\begin{aligned}
\text { Average value } & =\frac{1}{35-0} \int_{0}^{35} 225(1.15)^{t} d t \\
& =\frac{1}{35}(212,787)=\$ 6080
\end{aligned}
$$

