Calculus 112 Practice Problems

Section 7.4 Problems \#38, \#45, \#46, \#48
38. The denominator $x^{2}-3 x+2$ can be factored as $(x-1)(x-2)$. Splitting the integrand into partial fractions with denominators $(x-1)$ and $(x-2)$, we have

$$
\frac{x}{x^{2}-3 x+2}=\frac{x}{(x-1)(x-2)}=\frac{A}{x-1}+\frac{B}{x-2} .
$$

Multiplying by $(x-1)(x-2)$ gives the identity

$$
x=A(x-2)+B(x-1)
$$

so

$$
x=(A+B) x-2 A-B .
$$

Since this equation holds for all x, the constant terms on both sides must be equal. Similarly, the coefficient of x on both sides must be equal. So

$$
\begin{aligned}
-2 A-B & =0 \\
A+B & =1 .
\end{aligned}
$$

Solving these equations gives $A=-1, B=2$ and the integral becomes

$$
\int \frac{x}{x^{2}-3 x+2} d x=-\int \frac{1}{x-1} d x+2 \int \frac{1}{x-2} d x=-\ln |x-1|+2 \ln |x-2|+C .
$$

45. Since $x^{2}+x^{4}=x^{2}\left(1+x^{2}\right)$ cannot be factored further, we write

$$
\frac{x-2}{x^{2}+x^{4}}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C x+D}{1+x^{2}} .
$$

Multiplying by $x^{2}\left(1+x^{2}\right)$ gives

$$
\begin{aligned}
& x-2=A x\left(1+x^{2}\right)+B\left(1+x^{2}\right)+(C x+D) x^{2} \\
& x-2=(A+C) x^{3}+(B+D) x^{2}+A x+B,
\end{aligned}
$$

so

$$
\begin{aligned}
A+C & =0 \\
B+D & =0 \\
A & =1 \\
B & =-2 .
\end{aligned}
$$

Thus, $A=1, B=-2, C=-1, D=2$, and we have

$$
\begin{aligned}
\int \frac{x-2}{x^{2}+x^{4}} d x=\int\left(\frac{1}{x}-\frac{2}{x^{2}}+\frac{-x+2}{1+x^{2}}\right) d x & =\int \frac{d x}{x}-2 \int \frac{d x}{x^{2}}-\int \frac{x d x}{1+x^{2}}+2 \int \frac{d x}{1+x^{2}} \\
& =\ln |x|+\frac{2}{x}-\frac{1}{2} \ln \left|1+x^{2}\right|+2 \arctan x+K
\end{aligned}
$$

We use K as the constant of integration, since we already used C in the problem.
46. Let $x=3 \sin \theta$ so $d x=3 \cos \theta d \theta$, giving

$$
\int \frac{x^{2}}{\sqrt{9-x^{2}}} d x=\int \frac{9 \sin ^{2} \theta}{\sqrt{9-9 \sin ^{2} \theta}} 3 \cos \theta d \theta=\int \frac{\left(9 \sin ^{2} \theta\right)(3 \cos \theta)}{3 \cos \theta} d \theta=9 \int \sin ^{2} \theta d \theta .
$$

Integrating by parts and using the identity $\cos ^{2} \theta+\sin ^{2} \theta=1$ gives

$$
\begin{gathered}
\int \sin ^{2} \theta d \theta=-\sin \theta \cos \theta+\int \cos ^{2} \theta d \theta=-\sin \theta \cos \theta+\int\left(1-\sin ^{2} \theta\right) d \theta \\
\int \sin ^{2} \theta d \theta=-\frac{1}{2} \sin \theta \cos \theta+\frac{\theta}{2}+C
\end{gathered}
$$

Since $\sin \theta=x / 3$ and $\cos \theta=\sqrt{1-x^{2} / 9}=\sqrt{9-x^{2}} / 3$, and $\theta=\arcsin (x / 3)$, we have

$$
\begin{aligned}
\int \frac{x^{2}}{\sqrt{9-x^{2}}} d x & =9 \int \sin ^{2} \theta d \theta=-\frac{9}{2} \sin \theta \cos \theta+\frac{9}{2} \theta+C \\
& =-\frac{9}{2} \cdot \frac{x}{3} \frac{\sqrt{9-x^{2}}}{3}+\frac{9}{2} \arcsin \left(\frac{x}{3}\right)+C=-\frac{x}{2} \sqrt{9-x^{2}}+\frac{9}{2} \arcsin \left(\frac{x}{3}\right)+C
\end{aligned}
$$

48. Let $t=\tan \theta$ so $d t=\left(1 / \cos ^{2} \theta\right) d \theta$. Since $\sqrt{1+\tan ^{2} \theta}=1 / \cos \theta$, we have

$$
\int \frac{d t}{t^{2} \sqrt{1+t^{2}}}=\int \frac{1 / \cos ^{2} \theta}{\tan ^{2} \theta \sqrt{1+\tan ^{2} \theta}} d \theta=\int \frac{\cos \theta}{\tan ^{2} \theta \cos ^{2} \theta} d \theta=\int \frac{\cos \theta}{\sin ^{2} \theta} d \theta
$$

The last integral can be evaluated by guess-and-check or by substituting $w=\sin \theta$. The result is

$$
\int \frac{d t}{t^{2} \sqrt{1+t^{2}}}=\int \frac{\cos \theta}{\sin ^{2} \theta} d \theta=-\frac{1}{\sin \theta}+C
$$

Since $t=\tan \theta$ and $1 / \cos ^{2} \theta=1+\tan ^{2} \theta$, we have

$$
\cos \theta=\frac{1}{\sqrt{1+\tan ^{2} \theta}}=\frac{1}{\sqrt{1+t^{2}}}
$$

In addition, $\tan \theta=\sin \theta / \cos \theta$ so

$$
\sin \theta=\tan \theta \cos \theta=\frac{t}{\sqrt{1+t^{2}}}
$$

Thus

$$
\int \frac{d t}{t^{2} \sqrt{1+t^{2}}}=-\frac{\sqrt{1+t^{2}}}{t}+C
$$

