Section 9.4 Problems \#14, \#19, \#24, \#27, \#29, \#35-43

14. Since $a_{n}=1 /(2 n)$!, replacing n by $n+1$ gives $a_{n+1}=1 /(2 n+2)$!. Thus

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{\frac{1}{(2 n+2)!}}{\frac{1}{(2 n)!}}=\frac{(2 n)!}{(2 n+2)!}=\frac{(2 n)!}{(2 n+2)(2 n+1)(2 n)!}=\frac{1}{(2 n+2)(2 n+1)}
$$

so

$$
L=\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{1}{(2 n+2)(2 n+1)}=0 .
$$

Since $L=0$, the ratio test tells us that $\sum_{n=1}^{\infty} \frac{1}{(2 n)!}$ converges.

$$
n=1
$$

19. Since $a_{n}=2^{n} /\left(n^{3}+1\right)$, replacing n by $n+1$ gives $a_{n+1}=2^{n+1} /\left((n+1)^{3}+1\right)$. Thus

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{\frac{2^{n+1}}{(n+1)^{3}+1}}{\frac{2^{n}}{n^{3}+1}}=\frac{2^{n+1}}{(n+1)^{3}+1} \cdot \frac{n^{3}+1}{2^{n}}=2 \frac{n^{3}+1}{(n+1)^{3}+1}
$$

so

$$
L=\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=2
$$

Since $L>1$ the ratio test tells us that the series $\sum_{n=0}^{\infty} \frac{2^{n}}{n^{3}+1}$ diverges.
24. Let $a_{n}=1 / \sqrt{n}$. Then replacing n by $n+1$ we have $a_{n+1}=1 / \sqrt{n+1}$. Since $\sqrt{n+1}>\sqrt{n}$, we have $\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}$, hence $a_{n+1}<a_{n}$. In addition, $\lim _{n \rightarrow \infty} a_{n}=0$ so $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$ converges by the alternating series test.
27. Let $a_{n}=1 / e^{n}$. Then replacing n by $n+1$ we have $a_{n+1}=1 / e^{n+1}$. Since $e^{n+1}>e^{n}$, we have $\frac{1}{e^{n+1}}<\frac{1}{e^{n}}$, hence $a_{n+1}<a_{n}$. In addition, $\lim _{n \rightarrow \infty} a_{n}=0$ so $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{e^{n}}$ converges by the alternating series test. We can also observe that the series is geometric with ratio $x=-1 / e$ can hence converges since $|x|<1$.
29. The series $\sum \frac{(-1)^{n}}{2 n}$ converges by the alternating series test. However $\sum \frac{1}{2 n}$ diverges because it is a multiple of the harmonic series. Thus $\sum \frac{(-1)^{n}}{2 n}$ is conditionally convergent.
35. We have

$$
\frac{a_{n}}{b_{n}}=\frac{(5 n+1) /\left(3 n^{2}\right)}{1 / n}=\frac{5 n+1}{3 n},
$$

so

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{5 n+1}{3 n}=\frac{5}{3}=c \neq 0 .
$$

Since $\sum_{n=1}^{\infty} \frac{1}{n}$ is a divergent harmonic series, the original series diverges.
36. We have

$$
\frac{a_{n}}{b_{n}}=\frac{((1+n) /(3 n))^{n}}{(1 / 3)^{n}}=\left(\frac{n+1}{n}\right)^{n}=\left(1+\frac{1}{n}\right)^{n},
$$

so

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e=c \neq 0 .
$$

Since $\sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^{n}$ is a convergent geometric series, the original series converges.
37. The $n^{\text {th }}$ term is $a_{n}=1-\cos (1 / n)$ and we are taking $b_{n}=1 / n^{2}$. We have

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{1-\cos (1 / n)}{1 / n^{2}} .
$$

This limit is of the indeterminate form $0 / 0$ so we evaluate it using l'Hopital's rule. We have

$$
\lim _{n \rightarrow \infty} \frac{1-\cos (1 / n)}{1 / n^{2}}=\lim _{n \rightarrow \infty} \frac{\sin (1 / n)\left(-1 / n^{2}\right)}{-2 / n^{3}}=\lim _{n \rightarrow \infty} \frac{1}{2} \frac{\sin (1 / n)}{1 / n}=\lim _{x \rightarrow 0} \frac{1}{2} \frac{\sin x}{x}=\frac{1}{2} .
$$

The limit comparison test applies with $c=1 / 2$. The p-series $\sum 1 / n^{2}$ converges because $p=2>1$. Therefore $\sum(1-\cos (1 / n))$ also converges.
38. The $n^{\text {th }}$ term $a_{n}=1 /\left(n^{4}-7\right)$ behaves like $1 / n^{4}$ for large n, so we take $b_{n}=1 / n^{4}$. We have

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{1 /\left(n^{4}-7\right)}{1 / n^{4}}=\lim _{n \rightarrow \infty} \frac{n^{4}}{n^{4}-7}=1 .
$$

The limit comparison test applies with $c=1$. The p-series $\sum 1 / n^{4}$ converges because $p=4>1$. Therefore $\sum 1 /\left(n^{4}-7\right)$ also converges.
39. The $n^{\text {th }}$ term $a_{n}=(n+1) /\left(n^{2}+2\right)$ behaves like $n / n^{2}=1 / n$ for large n, so we take $b_{n}=1 / n$. We have

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{(n+1) /\left(n^{2}+2\right)}{1 / n}=\lim _{n \rightarrow \infty} \frac{n^{2}+n}{n^{2}+2}=1 .
$$

The limit comparison test applies with $c=1$. Since the harmonic series $\sum 1 / n$ diverges, the series $\sum(n+1) /\left(n^{2}+2\right)$ also diverges.
40. The $n^{\text {th }}$ term $a_{n}=\left(n^{3}-2 n^{2}+n+1\right) /\left(n^{4}-2\right)$ behaves like $n^{3} / n^{4}=1 / n$ for large n, so we take $b_{n}=1 / n$. We have

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\left(n^{3}-2 n^{2}+n+1\right) /\left(n^{4}-2\right)}{1 / n}=\lim _{n \rightarrow \infty} \frac{n^{4}-2 n^{3}+n^{2}+n}{n^{4}-2}=1 .
$$

The limit comparison test applies with $c=1$. The harmonic series $\sum 1 / n$ diverges. Thus $\sum\left(n^{3}-2 n^{2}+n+1\right) /\left(n^{4}-2\right)$ also diverges.
41. The $n^{\text {th }}$ term $a_{n}=2^{n} /\left(3^{n}-1\right)$ behaves like $2^{n} / 3^{n}$ for large n, so we take $b_{n}=2^{n} / 3^{n}$. We have

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{2^{n} /\left(3^{n}-1\right)}{2^{n} / 3^{n}}=\lim _{n \rightarrow \infty} \frac{3^{n}}{3^{n}-1}=\lim _{n \rightarrow \infty} \frac{1}{1-3^{-n}}=1 .
$$

The limit comparison test applies with $c=1$. The geometric series $\sum 2^{n} / 3^{n}=\sum(2 / 3)^{n}$ converges. Therefore $\sum 2^{n} /\left(3^{n}-1\right)$ also converges.
42. The $n^{\text {th }}$ term $a_{n}=1 /(2 \sqrt{n}+\sqrt{n+2})$ behaves like $1 /(3 \sqrt{n})$ for large n, so we take $b_{n}=1 /(3 \sqrt{n})$. We have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{1 /(2 \sqrt{n}+\sqrt{n+2})}{1 /(3 \sqrt{n})} & =\lim _{n \rightarrow \infty} \frac{3 \sqrt{n}}{2 \sqrt{n}+\sqrt{n+2}} \\
& =\lim _{n \rightarrow \infty} \frac{3 \sqrt{n}}{\sqrt{n}(2+\sqrt{1+2 / n})} \\
& =\lim _{n \rightarrow \infty} \frac{3}{2+\sqrt{1+2 / n}}=\frac{3}{2+\sqrt{1+0}} \\
& =1 .
\end{aligned}
$$

The limit comparison test applies with $c=1$. The series $\sum 1 /(3 \sqrt{n})$ diverges because it is a multiple of a p-series with $p=1 / 2<1$. Therefore $\sum 1 /(2 \sqrt{n}+\sqrt{n+2})$ also diverges.
43. The $n^{\text {th }}$ term,

$$
a_{n}=\frac{1}{2 n-1}-\frac{1}{2 n}=\frac{1}{4 n^{2}-2 n},
$$

behaves like $1 /\left(4 n^{2}\right)$ for large n, so we take $b_{n}=1 /\left(4 n^{2}\right)$. We have

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{1 /\left(4 n^{2}-2 n\right)}{1 /\left(4 n^{2}\right)}=\lim _{n \rightarrow \infty} \frac{4 n^{2}}{4 n^{2}-2 n}=\lim _{n \rightarrow \infty} \frac{1}{1-1 /(2 n)}=1 .
$$

The limit comparison test applies with $c=1$. The series $\sum 1 /\left(4 n^{2}\right)$ converges because it is a multiple of a p-series with $p=2>1$. Therefore $\sum\left(\frac{1}{2 n-1}-\frac{1}{2 n}\right)$ also converges.

