Section 9.5 Problems \#7, \#23, \#24, \#27

7. The general term can be written as $\frac{(-1)^{k}(x-1)^{2 k}}{(2 k)!}$ for $k \geq 0$. Other answers are possible.
8. Let $C_{n}=2^{n} / n$. Then replacing n by $n+1$ gives $C_{n+1}=2^{n+1} /(n+1)$. Using the ratio test, we have

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=|x| \frac{\left|C_{n+1}\right|}{\left|C_{n}\right|}=|x| \frac{2^{n+1} /(n+1)}{2^{n} / n}=|x| \frac{2^{n+1}}{n+1} \cdot \frac{n}{2^{n}}=2|x|\left(\frac{n}{n+1}\right) .
$$

Thus

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=2|x|
$$

The radius of convergence is $R=1 / 2$.
For $x=1 / 2$ the series becomes the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ which diverges.
For $x=-1 / 2$ the series becomes the alternating series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ which converges. See Example 8 on page 486 .

$$
n=1
$$

24. We use the ratio test:

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{x^{n+1}}{3^{n+1}} \cdot \frac{3^{n}}{x^{n}}\right|=\frac{|x|}{3} .
$$

Since $|x| / 3<1$ when $|x|<3$, the radius of convergence is 3 and the series converges for $-3<x<3$.
We check the endpoints:

$$
\begin{aligned}
x=3: & \sum_{n=0}^{\infty} \frac{x^{n}}{3^{n}}=\sum_{n=0}^{\infty} \frac{3^{n}}{3^{n}}=\sum_{n=0}^{\infty} 1^{n} \quad \text { which diverges. } \\
x=-3: & \sum_{n=0}^{\infty} \frac{x^{n}}{3^{n}}=\sum_{n=0}^{\infty} \frac{(-3)^{n}}{3^{n}}=\sum_{n=0}^{\infty}(-1)^{n} \quad \text { which diverges. }
\end{aligned}
$$

The series diverges at both the endpoints, so the interval of convergence is $-3<x<3$.
27. We use the ratio test:

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{(-1)^{n+1}(x-5)^{n+1}}{2^{n+1}(n+1)^{2}} \cdot \frac{2^{n} n^{2}}{(-1)^{n}(x-5)^{n}}\right|=\left(\frac{n}{n+1}\right)^{2} \cdot \frac{|x-5|}{2} .
$$

Since $n /(n+1) \rightarrow 1$ as $n \rightarrow \infty$, we have

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{|x-5|}{2} .
$$

We have $|x-5| / 2<1$ when $|x-5|<2$. The radius of convergence is 2 and the series converges for $3<x<7$.
We check the endpoints. For $x=3$, we have

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-5)^{n}}{2^{n} n^{2}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}(3-5)^{n}}{2^{n} n^{2}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}(-2)^{n}}{2^{n} n^{2}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

This is a p-series with $p=2$ and it converges. For $x=7$, we have

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-5)^{n}}{2^{n} n^{2}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}(7-5)^{n}}{2^{n} n^{2}}=\sum_{n=1}^{\infty} \frac{(-1)^{n} 2^{n}}{2^{n} n^{2}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}
$$

Since $\sum \frac{1}{n^{2}}$ converges, the alternating series $\sum \frac{(-1)^{n}}{n^{2}}$ also converges. The series converges at both its endpoints, so the interval of convergence is $3 \leq x \leq 7$.

