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Abstract 

The tunicate Ciona intestinalis is a nuisance biofouling species due to its negative effects on 

the aquaculture industry, particularly mussel farming. I conducted a two-year observational 

study on the Atlantic coast of Nova Scotia to ascertain the relationship between abiotic 

conditions and the heterogeneous distribution and growth of C. intestinalis populations. 

Temperature, salinity, pH, and water flow were recorded with in situ data loggers at thirteen 

sites from May to October in 2014 and 2015, while C. intestinalis abundance was monitored 

on settlement plates. Nonlinear mixed-effects (NLME) modelling fit the most likely models 

to these data using a logistic growth function with parameter estimates determined by the 

abiotic variables using maximum likelihood estimation methods. C. intestinalis’ response to 

the abiotic variables exhibited inter-annual and inter-site variation. The best model fit to the 

2014 data contained salinity variables only, while the best model in 2015 contained the 

variables temperature, salinity, pH, and water flow. Intra-annual model validation and nested 

cross-validation resulted in c. 90 % model efficiency in prediction. The inter-annual 

difference in C. intestinalis response meant that model predictions of alternate years were 

variable with reduced efficiency. The observed variability in this system has underlined the 

importance of continued long-term monitoring. All of the abiotic variables added valuable 

information to the models, possibly due to the lack of a dominant variable that would reduce 

the value of variables contributing less information. The use of random effects improved 

model fit compared to fixed effects alone, exhibiting that NLME modelling is an effective 

tool to explain the growth of C. intestinalis in stochastic abiotic environments.  
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1. Introduction 

1.1 Overview 

Invasive species spread by human activities are a major problem in today’s marine 

ecosystems (Grosholz, 2002). Invaders can out-compete native species for food, space or 

other resources, disrupting natural communities and compromising the ecosystem services 

important for human populations. Several tunictae species are among the most invasive 

marine species documented (Adams et al., 2011; Carman et al., 2010), with populations 

spread worldwide through ballast water, hull fouling, and improperly handled aquaculture 

materials (Ramsay et al., 2008a). These animals with short-lived planktonic larvae and 

sessile, filter-feeding adults proliferate on many subtidal surfaces, including man-made 

substrata. The establishment of Ciona intestinalis, commonly referred to as the vase tunicate, 

in Atlantic Canadian waters has negatively impacted mussel farm productivity (ACRDP, 

2010). C. intestinalis grows in dense aggregations on ropes, nets and the cultured mussels 

themselves. Tunicate fouling affects many types of aquaculture, but for mussel farmers in 

particular, managing vase tunicates can increase costs to the point of zero profit. The 

Department of Fisheries and Oceans Canada (DFO) has monitored C. intestinalis in Nova 

Scotia (NS) since 2005, and the distribution throughout coastal NS was spatially and 

temporally heterogeneous (Sephton et al., 2011). This variability in invasive success has not 

yet been properly explained. An improved understanding of what determines C. intestinalis 

distribution and abundance around the province may help to mitigate current invasions, limit 

further spread, and guide aquaculture management decisions. 

The overall goal of this research is to explain why C. intestinalis populations are spatially and 

temporally heterogeneous. Heterogeneity could be due to: (i) patterns of anthropogenic 

activity, such as aquaculture practices and vessel movement; (ii) genetic diversity that causes 

different responses to similar environmental conditions; (iii) variable biotic interactions 

(competition, predation, facilitation); or (iv) variable environmental conditions throughout 

the province. For this study, I investigated the fourth possibility, to determine whether 

heterogeneous C. intestinalis abundances can be linked to one or more environmental 

parameters that can regulate population growth. The basic objectives were: (i) to generate a 

detailed record of C. intestinalis population growth and of temperature, salinity, pH and water 

movement conditions at a range of sites; (ii) to determine if there are associations between 

the environmental conditions and C. intestinalis population growth; (iii) and to develop and 
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improve upon existing methods to monitor macroscale population growth of a sessile marine 

invertebrate. Relative abundance was monitored on standard invasive species monitoring 

collectors deployed at harbours and aquaculture sites with varying C. intestinalis abundance, 

according to historical records. Environmental monitoring was accomplished with in-situ 

data-loggers that allowed long-term, high-frequency measurements, improving the ability to 

capture potentially relevant characteristics that either negatively or positively affect C. 

intestinalis growth. Temperature (Dybern, 1965), salinity (Dybern, 1967) and water 

movement (Havenhand and Svane, 1991) are all known to affect C. intestinalis at various 

life-stages. Although very little is known about specific pH effects on tunicates in general, the 

limited information suggests tunicates (C. intestinalis among the handful tested) may find 

more acidic conditions beneficial (Dupont et al., 2009, 2008). Given the changing state of 

global oceanic chemistry due to increasing carbon dioxide uptake, this is a key area of 

interest (Doney et al., 2009). The overall objective was to develop a predictive model based 

on these data that inputs the abiotic determinants (if present) of C. intestinalis population 

growth, thus producing a robust and reliable guide to understanding and perhaps predicitng 

C. intestinalis distribution and abundance. 

Aquaculture is likely to be an important industry for future global food security (Gjedrem et 

al., 2012). While my research is fundamentally addressing C. intestinalis population ecology, 

the results may be useful for mussel farming and other activities that are affected by 

biofouling caused by this nuisance species. Links (or lack thereof) between C. intestinalis 

abundance and environmental conditions could help to refine assessment of aquaculture sites 

for their risk of infestation, possibly affecting profitability of existing and potential sites. My 

work could improve general knowledge of the spread and success of a prominent invasive 

species, with potential to inform future prevention and mitigation strategies. In addition, 

invasive species, in general, pose a threat to ecosystems, making it desirable to understand 

factors that lead to population changes in species of interest. The methods used in my study 

to model associations between abiotic conditions and population growth could be transferable 

to other troublesome biofouling species, providing a framework to approach a similar 

research project. Finally, with increasing pressure on the environment from global change, 

baseline monitoring provided by research, such as this study, is essential for assessing the 

scope of such changes. 

1.2. Invasion ecology 
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1.2.1. The history and terminology  

The first issue encountered while reading about invasion ecology, regardless of the 

environment in question, is the complex and often contradictory vernacular within the 

discipline. Some authors use words like ‘introduced’ and ‘invasive’ interchangeably 

(Williams and Smith, 2007), while others have clear-cut definitions for important 

terminology. Introduced species, often referred to as alien, non-native, exotic or non-

indigenous species (NIS), are ones that have been transported by humans, intentionally or 

not, to an area outside of their native range, often across a major geographical barrier 

(Richardson et al., 2000). The concept of ‘native’ and ‘non-native’ species was introduced by  

Henslow (1835) and  these are widely accepted terms. The perception of an introduced 

species is relatively ubiquitous: it is trying to define what an invasive species is that poses a 

challenge. There appear to be two general opinions as to what the correct definition of an 

invasive species should be. Some authors, Richardson et al. (2000) among them, argue that 

the term ‘invasive’ should only be applied to introduced species that have become abundant 

and expanded their geographic range, linking the term to a clear biological phenomenon, 

geographic range expansion. The second general understanding, advocated for by Lockwood 

et al. (2013) and many others, is that ‘invasive’ describes a species that has a demonstrable 

negative ecological or economic impact.  Lockwood et al. (2013) argue that invasion is truly 

the end product of a series of stages (Fig. 1.1), each one providing a barrier to the potentially 

invasive species. This proposes the view of invasion as a stepwise process, leading to a better 

ability to manage invaders through a clearer view of when anthropogenic and ecological 

processes come into play, rather than viewing invasion as a dichotomous classification, i.e. 

invasive or not. 

There have been numerous attempts to end the inconsistencies in terminology used in 

invasion ecology and to construct a common framework that could be employed universally 

in the discipline (Blackburn et al., 2011; Inderjit et al., 2006; Richardson et al., 2000). 

Despite these efforts, to satisfy disagreements over terminology it’s common for authors to 

lay out their definitions of key terminology (Inderjit et al., 2006; Lockwood et al., 2013). 

Based on the literature and for the purposes of this thesis, I will be using the Lockwood et al. 

(2013) definition of invasive species. An invasive species is one that causes an evident 

negative ecological or economic impact. The detrimental economic impact imposed on 

societal sectors of interest by C. intestinalis biofouling is clear (ACRDP, 2010; Ramsay et al., 
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2008b). This, on top of the likely negative impacts it has for a number of native species 

(Blum et al., 2007), provides a good basis to consider C. intestinalis as an invasive species. 

 

Figure 1.1: A simple model of the invasion process showing the distinct stages, 

reproduced from Lockwood et al. (2013) with the permission of John Wiley and Sons. 

1.2.2. Introduced species: a precedent for invasion? 

Biological invasions are recognised as a major threat to worldwide terrestrial, marine and 

freshwater biodiversity, as well as causing substantial economic losses across the globe 

(Colautti et al., 2006; Kelly et al., 2009; Marquet et al., 2012; Prenter et al., 2004; Sylvester 

et al., 2011). The majority of the literature, when addressing the issue of biological invasion, 

opens by stating the current and impending threats that this process poses to biodiversity and 

the economy. Prenter et al. (2004) go as far as to say we are facing an “invasional meltdown”, 

hence why it is so important to gain a greater insight into the processes of biological invasion, 

from beginning to end. This is not to say that all introduced species pose an invasion risk. In 

fact, it is estimated that roughly 0.1% of original introductions reach a point where they end 

up categorized as invasive (Williamson and Fitter, 1996). Despite the seemingly negligible 

amount of introductions that pose an invasion risk, they have an impact disproportionate to 

the number of species. 

However, in recent times there have been voices rising in opposition to the status-quo, instead 

advocating for a more flexible approach when viewing ‘introduced’ species in the 
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increasingly connected world we are faced with. Davis et al. (2011)  argue that the 

predisposition to view introduced species as bad is biased and leads to poor management 

decisions and wasted resources on needless  control efforts. Debate and subjectivity 

surrounding the true definition and importance of biological invasion is not a new occurrence. 

The divide in opinions has been building since the inception of the discipline of invasion 

ecology in the mid twentieth century. Despite being such a long standing issue, this field of 

discussion is far from over with multiple avid proponents on either side of the debate. 

However, there was a decisive rebuttal to Davis et al. (2011) in the shape of a series of 

correspondents in Nature (Alyokhin, 2011; Lerdau and Wickham, 2011; Lockwood et al., 

2011; Simberloff, 2011) all addressing separate flaws in the argument. While it is becoming 

more popular to condemn the segregation of species based on their native and non-native 

status as a precursor to judgment of invasive likelihood, there is a solid foundation to the 

discipline and reasoning behind these practices. While there may be benefits to some 

introduced species, t the ramifications introduction are largely unpredictable. History has 

shown us that in the grand scheme of things, an increasing number of introductions lead to a 

greater number of troublesome invasive species. As to the worry that resources are wasted on 

needless management: limited starting resources are inherent in the selection process for 

control and management, meaning there is already a rigorous screening system to focus only 

on species with a high potential negative impact (Simberloff, 2011). These high risk species 

are often outlined on a national or regional basis in terms of lists, such as ‘species of most 

concern’ or ‘least wanted’ that are often a part of public awareness campaigns. While Davis 

et al. (2011) challenge the militaristic terminology implemented in invasion ecology, the 

attention of the public has been caught in the case of many well-known invasive species, and 

it may be best to capitalize on this awareness to reduce overall introductions, in the hope of 

preventing some invasions. Adopting a framework  à la Davis et al. (2011) whereby 

management bodies, public and private, accept a new age of global connectivity and the 

ecological and biological changes that occur as a result would be fine, if resources that we as 

humans rely on weren’t detrimentally impacted. A balanced view is required when assessing 

introduced species. Not every introduction causes problems, and the majority of invasion 

ecologists explicitly proclaim this (Lockwood et al., 2011). Focus on the tiny proportion of 

introductions that do go on to be classed as invasive could present an apparent bias in the 

literature, but the “vilification” that Davis et al. (2011) believe is pervasive within the 

discipline is justified for the small proportion of introductions that do wreak environmental 

and economic havoc. The negative impacts caused by invasive species are well documented, 
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as well as being very difficult to predict a priori (Simberloff, 2011). But for the small number 

of introduced species that do have a large negative impact, it is more effective to err on the 

side of caution and implement prevention management and rapid response management 

(Lerdau and Wickham, 2011). 

1.2.3. Transport and introduction of marine benthic invasive species 

Introductions in the marine environment have been greatly facilitated by human mediated 

transport and the aquaculture industry (Rigal et al., 2010). Murray et al. (2012) suggest that 

the transport of marine NIS and thus, the first step of the invasion process, is the uptake by a 

human mediated vector, either accidentally through hull fouling of ships, intake of species via 

ballast water or sea chests (intake chambers in vessel hulls), or intentionally through the trade 

of resources via the aquaculture industry. Hull fouling and the transportation of organisms in 

ballast water tanks and sea chests are recognised as the main vectors for the inadvertent 

introduction of the majority of marine benthic introductions in all oceans and estuaries, 

despite current technology and preventative measures (Farrapeira et al., 2011; Murray et al., 

2013). Successful introductions then rely on the survival of such species transported by any 

of these means.  

The study of biofouling communities on submerged surfaces in the marine environment is not 

a recent area of study. A study dating back to the early 20
th

 Century, entirely focuses on the 

cause and effects of biofouling on ships submerged surfaces, while the US Navy also carried 

out research in this area (Visscher, 1927). However, the focus of such studies has changed 

over the years. While Visscher (1927) and the US Navy were primarily interested in the 

impact of biofouling on fuel consumption, recent studies have paid more attention to the 

ability of ships to act as vectors for global marine biological invasion. One of the first 

publications in a leading journal, Nature, to pay attention to the spread of a marine benthic 

species outside of its historically native range was written by Sandison (1950). He was 

interested in the appearance of Elminius modestus Darwin, an Australasian barnacle, in the 

northern hemisphere for the first time. Only a few years later, Allen (1953) presented his 

findings that a probable cause for the discovery of several species of Bryozoa never 

previously recorded in Australian waters, was the movement of sessile marine organisms 

attached to the submerged surfaces of ships. More recently, there has been an explosion in the 

interest shown towards biological invasion, with a marked increase in literature referencing 

‘invasion ecology’ in their keywords from the early 1990s (Lockwood et al., 2013). While it 
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is a common comment in the introduction of articles that the initial processes of marine 

biological invasion are understudied and poorly understood, especially at a global level 

(Davidson et al., 2010; Lacoursière-Roussel et al., 2012a; Murray et al., 2012; Ruiz et al., 

2013; Seebens et al., 2013), I believe that there has been a significant amount added to the 

literature recently. Particularly in attempts to create predictive models for invasion based on 

environmental conditions, biogeographic distribution information and vector based 

information. This work is helping to vastly improve the understanding of the initial process of 

marine benthic biological invasion. Despite the greater attention to this area of late, there is 

still work to be done, given the ever increasing global trend of invasion. 

Verling et al. (2005) described the factors that most commonly determine the success of a 

marine invasion. The spread of marine benthic invasive species (MBIS) is subject to: the 

availability of suitable transport vectors; the rate of vector movements between the source 

and the receiving environment; the quantity and quality of propagules released in individual 

inoculation events; the timing of any introduction event relative to the species’ life history; 

and the availability of limiting resources in the receiving environment. The vast variation 

between any one of these factors at any one time, make the spread of MBIS very difficult to 

predict (Floerl et al., 2009). However, predictive models based on the factors outlined above 

(Verling et al., 2005) have been developed in order to predict where sources of introductions 

are most likely to occur and where is more susceptible to introductions of MBIS. In one such 

model, developed by Floerl et al. (2009), the results suggested that locations with a high 

degree of connectivity to other locations, through a high volume of traffic, were four times as 

likely to become invaded as locations with low traffic and connectivity, as well as 

experiencing invasion events earlier. A number of other models like this have been devised to 

try and increase the success of vector management, using predictors like: time since last 

antifouling treatment; time since last cleaning; type of vessel; length of voyage; speed of 

voyage; and time spent in each port (Lacoursière-Roussel et al., 2012b; Sylvester et al., 

2011). All of the aforementioned can contribute to the probability of introduction and the 

potential success of invasion.  

The initial introduction of MBIS is dependent on their survival during the transportation 

process. Depending on the vector, they may have to resist a variety of physical and 

physiological stressors connected to their journey (Murray et al., 2012). The attachment 

strength and drag coefficient are attributes that are very important in the assessment of hull 

fouling species. Murray et al. (2012) hypothesise that a successful invader that utilises hull 
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fouling as a means of introduction and spread, would have a strong attachment strength and 

low drag coefficient. When compared to a native counterpart it is suggested that they would 

possess superior biomechanical properties, allowing them to remain attached more 

successfully. Testing the attachment strength and drag coefficient, they found that Styela 

clava, a well-known invasive solitary tunicate (like C. intestinalis), has superior attachment 

strength and a lower drag coefficient than a number of native tunicates. It was the only tested 

species to have a dislodgment velocity well above that of a fast moving vessel. Their results 

show that different vectors use by different types of species is likely, with colonial tunicates 

such as Didemnum vexillum and Botrylloides violaceus more likely to be found on slow 

moving vessels such as sail boats and barges. In saying that, colonial tunicates can utilize a 

different strategy likely to be employed by a number of species. Fragmentation of the 

organism can occur when drag becomes too great (or when pressure washed as a biofouling 

treatment), possibly leaving remains of the individual on the boat/substrate while the 

fragmented portion can float with the ability to reattach elsewhere (Paetzold and Davidson, 

2010; Reinhardt et al., 2012).  

Species-specific traits often determine what vector will be more likely to cause an 

introduction for that given species. The transportation and release of ballast water is regarded 

as one of the most important vectors for the introduction of benthic marine species around the 

globe (Chan et al., 2013; DiBacco et al., 2012; Seebens et al., 2013). Despite this, tunicates 

have rarely been recorded in ballast water (Lacoursière-Roussel et al. 2012b). The fouling of 

hulls however is a well-recognised vector for tunicate introduction (Davidson et al., 2010). 

Understanding the most likely vector of introduction provides a vital step in detection and 

prevention. Not only is the vector-type important, but so too is understanding the given vector 

in a specific region. Seasonal trends and boating patterns can influence the spread of fouling 

species greatly. Differences in the seasonal peak of tunicate infestation and boating usage 

vary between Canada and New Zealand for example, displaying that one method of control 

does not work across the board, due to varying spatial and temporal factors (Lacoursière-

Roussel et al. 2012b).   

1.2.4. Gaining and maintaining dominance in a new environment 

The chronic and stochastic challenges facing introduced species can be both abiotic and 

biotic in nature, with a combination of these forces generally acting in concert with the 

particular characteristics of the species at hand, determining the success of establishment and 
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potential range expansion (Lockwood et al., 2013; Mack et al., 2000). While my research is 

focused primarily on the abiotic forces at play in determining the growth of C. intestinalis, it 

is important to outline some of the key invasion ecology theory underlying potential biotic 

forces at play in the system. The fundamental processes that occur during succession can help 

us to understand the processes of species invasion, as the initial rise to dominance through 

succession can be compared to the initial stages of biological invasion (Wootton, 2002). 

 

Figure 1.2: Description of potential mechanisms involved in the rise to, establishment of, 

and loss of dominance reproduced from Wootton (2002) with the permission of 

Springer. 

Generally, a species’ dominance in a given community is related to the amount of biomass 

present (Wootton, 2002), particularly for sessile assemblages such as macroalgae and many 

marine invertebrates. Fig. 1.2 outlines the general stages that occur in succession that can 
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eventually lead to species dominance and in the case of biological invasions, range 

expansion. The colonization process outlined in Fig. 1.2 is comparable to the transport and 

introduction phase of biological invasion discussed earlier in sec. 1.2.2., as well as survival to 

recruitment. It is important to take the initial process of establishment into account when 

considering the broader temporal issue of maintained dominance, as the initial propagule 

pressure and colony pressure imposed by an introduction have been suggested to play a role 

in post-establishment growth (Ricciardi et al., 2013). The other parallel between succession 

and invasion is the interaction and effects of the biotic and abiotic forces acting on a given 

organism or system. Fig. 1.2 describes the processes and factors involved in the rise and fall 

of dominance that determine succession. It is only recently that the attention of researchers 

has been drawn to the biotic interactions that mediate the persistence of invasive species after 

establishment (Scheibling and Gagnon, 2006). The majority of interactions described in the 

literature have previously been inferred from correlative evidence rather than rigorous 

experimental testing of mechanisms. Mortality is the fundamental process that leads to the 

demise of a dominant species and can occur for a number of different reasons specified in 

Fig. 1.2. Therefore, once an introduced species has become established and invasive, it can 

prevent the loss of dominance described in Fig. 1.2 by overcoming factors such as 

competition, consumption and physical disturbance. The abiotic conditions a species is 

subjected to can play a role in their ability to deal with and overcome such factors. 

Comparing the processes of succession to biological invasion can help us to understand what 

species’ traits and interactions lead to the establishment and maintenance of dominance in a 

biological invasion. 

1.2.4.1. Current hypotheses explaining the success of MBIS 

A variety of ecological mechanisms have been offered to explain invasion success through 

hypotheses such as the ‘enemy-release hypothesis’ (ERH), ‘novel weapon hypothesis’, 

‘evolution of increased competitive ability’, ‘ecosystem engineering’ and the ‘invasional 

meltdown hypothesis (IMH)’ (Kimbro et al., 2013). This area is severely understudied in 

relation to MBIS and would certainly classify as a knowledge gap. The majority of work on 

these hypotheses has been carried out for terrestrial plants and is theoretical on the whole 

(Ricciardi et al., 2013). But there has been a recent appearance of empirical studies on algae 

(Enge et al., 2013; Svensson et al., 2013) and to a lesser extent, invertebrates (Raw et al., 

2013).  
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1.2.4.2. The role of predation in biological invasion 

As highlighted in Fig. 1.2, consumption is one of the main contributors to population 

mortality and if experienced at high enough levels can lead to the loss of dominance of a 

species in a given community. One of the explanations for invasive species success in 

establishment, persistence, and spread is the ERH, originally conceived in the field of plant 

invasions (Keane and Crawley, 2002). It is the theory that invaders escape their natural 

predators and are more successful in the invaded range as the native predators do not 

consume them, or to a lesser extent than native prey (Dumont et al., 2011). There is 

contrasting evidence throughout the literature about the validity of this hypothesis, not to 

mention the conflicting biotic resistance hypothesis (BRH), which predicts that introduced 

species are poorly adapted to deter native consumers, limiting invasibility (Elton, 1958). Both 

hypotheses are supported and it is likely that both are important in different situations. This is 

another area where the abiotic conditions can influence the outcome these biotic forces. There 

is a major issue in that the majority of work carried out on these hypotheses has been carried 

out on terrestrial plant communities, results of which are then being transplanted and 

compared to the limited work carried out in the marine environment. Further focused 

experimental work is required in this area before a consensus can be formed on what role 

predation plays in invasion success. 

1.2.4.3. The role of competition in marine benthic invertebrate invasion  

Competition has traditionally been viewed as the key mechanism determining NIS impacts 

(Kelly et al., 2009). It is a key factor in NIS displacing native species and remaining 

dominant in the invaded region (Byers, 2002) and Fig. 1.2 displays competitive ability as a 

key component of the establishment and maintenance of dominance (invasion).  

Superior competitive ability may be explained by a superior ability for resource acquisition, a 

rapid rate of both reproduction and growth, greater tolerance to environmental change, and 

adaptation to disturbance (Enge et al., 2013). Anthropogenic activity, particularly 

environmental disturbance, is altering the interspecific interactions that occur in marine 

communities, often to the benefit of opportunistic species (Harris and Tyrrell, 2001). The 

overfishing of top predators such as fish and sea urchins, as well as the physical disturbance 

of activities such as dredging are providing an environment that many invasive species can 

flourish in, and combined with the absence of top predators, is allowing for invasive species 

to prosper and outcompete native species (Harris and Tyrrell, 2001). 
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1.3. Ciona intestinalis 

1.3.1. The colourful history of C. intestinalis 

Commonly referred to as the vase tunicate, C. intestinalis (Linnaeus 1767) is a solitary 

ascidian and member of the class Ascidiacea, first described as Ascidia testinalis by Linnaeus 

in 1767. Not so long ago, C. intestinalis was believed to be a single globally distributed 

species. However, genetic and genomic studies carried out on individuals from different 

populations around the world revealed the true diversity present, with at least four distinct 

entities discovered (Caputi et al., 2007; Suzuki et al., 2005). Whether it was a cryptic species-

complex (Caputi et al., 2007) or a series of sub-species (Suzuki et al., 2005) was debated. Of 

these four entities, there were two in particular, referred to at the time as C. intestinalis type 

A and type B, that were widespread and also causing the biofouling and invasive issues. 

Morphological and genetic studies continued at an increasing rate. Sato et al. (2012) 

published reasonably reliable morphological metrics capable of identifying the two in the 

field, while a host of genetic studies provided more evidence underlying the distinctions 

between the entities (Nydam and Harrison, 2011, 2010, 2007; Roux et al., 2013; Zhan et al., 

2012, 2010). What was previously thought of as a single species with a remarkable global 

distribution was in fact comprised of “two distinct, highly divergent entities” (Nydam and 

Harrison, 2010).  Findings of morphological differences between adults and larvae of the two 

widely distributed types led Brunetti et al. (2015) and Pennati et al. (2015) to recommend  the 

two entities be officially recognised as separate species. They propose that C. robusta 

(already described as a unique species (Hoshino and Tokioka, 1967), until it was redefined as 

a synonym of C. intestinalis) be adopted for the formerly referred to C. intestinalis type A, 

while type B shall remain C. intestinalis. The classification recommendations have already 

been adopted by some (Bouchemousse et al., 2015), while other fields of research are not 

consistent or up-to-date. All work prior to 2005 presented work regarding C. intestinalis as 

relating to a single global entity, understandably so. Even for a few years thereafter, it is 

reasonable to accept that the distinctions that were becoming apparent were not widely 

adopted, in any field of research. However, the fact that it is still being overlooked to this 

day, for whatever reason, is unreasonable. 

A huge number of proteomics and development studies carried out on what is called ‘C. 

intestinalis’ in the publications are actually using samples collected from areas where C. 

robusta is exclusively present, while others are using samples from areas where sympatry 
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occurs (Goff et al., 2015; Matsunobu and Sasakura, 2015; Nakamura et al., 2015; Vizzini et 

al., 2015). The majority of these studies do not provide any account of the presence of two 

distinct species, let alone offer a description of the molecular divergence of the two species. It 

is the rare case for a publication in this field to distinguish between the two species. In one 

proteomics study (Nakazawa et al., 2015),  the study organism is referred to as “Ciona 

intestinalis type A (C. robusta)” in the abstract and material and methods, but then 

throughout the remainder of the publication it’s referred to solely as C. intestinalis. Having 

recognised the recent recommendation that C. intestinalis type A is actually C. robusta, it is 

unusual that it is then reverted to C. intestinalis. Then there are studies that correctly use the 

nomenclature of C. intestinalis throughout when referring to specimens collected in an 

allopatric region, but have failed to distinguish the varying regions of C. intestinalis and C. 

robusta in the global distribution when described in the introduction  (Zhao et al., 2015). A 

far smaller portion of recent works are fully clarifying where the sample organisms 

originated, appropriately recognizing the Ciona type, and consequently referring to it 

appropriately throughout the publication (Jeffery, 2015). 

The consequences of carrying out research on a given species and then attributing the results 

to a closely related species without distinguishing the potential genetic and phenotypic 

variation between the two are difficult to quantify. I am by no means admonishing any of the 

previous works, or suggesting they are less relevant, but the question remains: what are the 

true consequences of misattribution of result? It is also possible that the degree of importance 

of such misattributions is variable depending on the field and context of a given study. 

Transferability of genome-wide microsatellite markers from C. robusta and C. intestinalis is 

lower than might be expected, while all transferable markers are polymorphic in C. 

intestinalis (Lin et al., 2015). While the true meaning of this in terms of the phenotypic 

differences that might occur as a result of the genome divergence is not clear, there is a 

correlation between low transferability and genetic divergence across many taxa, with 

potential developmental and ecological implications (Lin et al., 2015). 

Closer to home, multiple ecological publications have grouped data obtained from the two 

species into single predictive models, risk assessments or physiological experiments, without 

a caveat mentioning the distinction and possible implications of the differences (Kanary et 

al., 2011; Patanasatienkul et al., 2014; Serafini et al., 2011; Therriault and Herborg, 2008a, 

2008b). This could be quite important, given some of the information input into models about 

environmental tolerances or reproductive and development characteristics being quite 
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different. The difference between c.12,000 eggs in a lifetime in individuals sampled in 

Canada compared to c.100,000 eggs in the lifetime of C. robusta in Japan is a starting 

estimate that could have significant bearing on a predictive dispersal or life-history model. 

The fundamentals of designing experiments to answer questions about a specific species can 

potentially be erroneous if the most recent information regarding such nuances is not 

accounted for.  

These revelations in the field of C. intestinalis studies have shed light on the distribution and 

potential origins of the two species previously grouped under the same name. It appears as if 

C. intestinalis is native to the Northern Atlantic Ocean, and was introduced to the Western 

Atlantic Ocean, displaying a preference for a cold temperate climate (Nydam and Harrison, 

2011). The Northwestern Pacific region is most likely the indigenous range of C. robusta 

(Nydam and Harrison, 2011), which has been introduced to the east coast of N. America, the 

Mediterranean Sea, both Atlantic and Indian Ocean coasts of South Africa, the Atlantic coast 

of South America, Australia, and New Zealand (Caputi et al., 2007; Rius et al., 2014; Zhan et 

al., 2012, 2010). What was previously considered as C. intestinalis’ native and invasive 

ranges (Therriault and Herborg, 2008a), now loosely translates to the distribution of C. 

intestinalis and C. robusta respectively. The only known region of sympatry is the English 

Channel and French Atlantic coast (Nydam and Harrison, 2011; Roux et al., 2013).  

1.3.2. Distribution of C. intestinalis in Atlantic Canada 

C. intestinalis is currently classed as a cryptogenic species (of unknown origin) in Canadian 

waters, but was most likely introduced from northern Europe via ship hull fouling. Despite 

this, there is a degree of uncertainty due to records of its presence in New Brunswick dating 

back to 1852 (Carver et al., 2006). The recorded progression of C. intestinalis around NS, 

appearing to stem from a locus on the southern shore, appears more like an introduction and 

spread rather than a species that has been present in the coastal waters of NS for a long period 

of time. Given the long-running confusion regarding the taxonomic classification of species 

within the Ciona genus, I would advise caution when using a single observation of C. 

intestinalis in the mid-1800s to establish its historical record in Atlantic Canada. It is possible 

that the recording in New Brunswick was a single introduction occurrence or even a different 

species misidentified. There is a sufficient weight of evidence to progress with the view that 

C. intestinalis was introduced to NS via some mode of unintentional vector transport. 
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C. intestinalis is heterogeneously distributed on the  NS coastline (Sephton et al., 2011), a  

relatively common occurrence among populations of this species. In what is believed to be 

the native range of C. intestinalis, Northern Europe, heterogeneity has been recorded both 

spatially and temporally (Petersen and Svane, 1995). Spatial abundance and heterogeneity of 

C. intestinalis populations in Norway have been linked to predation by a number of fishes 

and particularly the sea star Asterias rubens (Gulliksen and Skjæveland, 1973). The 

mechanisms regulating the temporal variation in abundance representative of C. intestinalis 

populations in Norway not certain, but it is believed to be a long-term cycle linked to 

recruitment that causes it (Petersen and Svane, 1995). The heterogeneous distribution pattern 

in NS (Fig. 1.3 – 1.7), spatially and temporally, is similar to other C. intestinalis populations 

around the world, but the reasons behind it are as of yet unknown. Temperature and salinity 

do influence C. intestinalis survival and growth, but to what degree local conditions influence 

the establishment and spread of individual C. intestinalis populations remains unknown 

(Vercaemer et al., 2011). There are also a wide range of additional environmental variables 

that could act individually or together to explain the variability of establishment and spread of 

C. intestinalis in NS. 
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Figure 1.3: Abundance (represented as % cover on standard monitoring collectors) of 

C. intestinalis at NS coastal and inland monitoring sites in 2010, obtained through DFO 

AIS surveys (Reproduced from Sephton et al. (2014) with permission). 

 

Figure 1.4: Abundance (represented as % cover on standard monitoring collectors) of 

C. intestinalis at NS coastal and inland monitoring sites in 2011, obtained through DFO 

AIS surveys (Reproduced from Sephton et al. (2015) with permission). 
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Figure 1.5: Abundance (represented as % cover on standard monitoring collectors) of 

C. intestinalis at NS coastal and inland monitoring sites in 2012, obtained through DFO 

AIS surveys (Pers. comm. Sephton D., with permission from the DFO). 

 

Figure 1.6: Abundance (represented as % cover on standard monitoring collectors) of 

C. intestinalis at NS coastal and inland monitoring sites in 2013, obtained through DFO 

AIS surveys (Pers. comm. Sephton D., with permission from the DFO). 
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Figure 1.7: Abundance (represented as % cover on standard monitoring collectors) of 

C. intestinalis at NS coastal and inland monitoring sites in 2014, obtained through DFO 

AIS surveys (Pers. comm. Sephton D., with permission from the DFO). 

1.3.3. C. intestinalis biology 

Abiotic conditions have the potential to influence C. intestinalis survival, growth, and 

reproduction throughout its life cycle. In the following sections I will introduce an overview 

of C. intestinalis biology in relation to the environment it inhabits, with an onus on studies 

conducted in Atlantic Canada, especially related to temperature, salinity, water flow, and pH.   

1.3.3.1 Reproduction 

C. intestinalis is a hermaphroditic broadcast spawner, releasing eggs and sperm into the water 

column where fertilization occurs (Byrd and Lambert, 2000). At the onset of gamete 

production, sperm is produced in advance of the appearance of eggs (protandric 

hermaphroditism). The production of gametes is believed to be mainly temperature 

dependent, while their release is influenced to some degree by light (Lambert and Brandt, 

1967). A study carried out in NS by Carver et al. (2003) assessed the reproductive 

capabilities of C. intestinalis, relating them to the seasonal changes in water temperature. 

They found that from November (7°C) to January (1°C) ripe eggs were present in the ovary, 

while egg resorption occurred in February and March (-1°C). The production of gametes 
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began again in April when water temperature increased to 4°C.  C. intestinalis populations in 

NS are appear to commence  spawning when water temperatures reach about 8°C (Ramsay et 

al., 2008a). While C. intestinalis has been observed reproducing continuously throughout the 

year, provided the water temperatures are suitable (Yamaguchi, 1975), the cited study was 

carried out on populations in Japan, most likely composed of C. robusta.  

Eggs are viable for about 30 h and release a sperm chemoattractant until fertilization occurs 

(Carver et al., 2006). Upon fertilization, embryonic development varies with temperature, 

generally taking ~ 24 h before larval hatching occurs, resulting in a non-feeding larvae about 

1mm in length. They tend to be short-lived and have the ability to swim, if relatively poorly. 

The duration of the pelagic larval stage is variable, again dependent upon temperature, while 

other factors are likely to influence this. Estimates tend to range between 1 and 5 days for 

maximum lifespan of the larvae. The salinity of the environment inhabited by the adult C. 

intestinalis has been shown to have an effect on the fertilization and larval development of 

their progeny. Regardless of the long-term salinity of an environment, parents exhibit high 

levels of phenotypic plasticity, resulting in improved larval tolerance and  metamorphosis if 

they are present in a similarly saline environment to which their parents were subjected to in 

the recent past (Renborg et al., 2013). It is also suggested that lower pH values improve the 

survival and development of C. intestinalis larvae (Dupont et al., 2009). 

1.3.3.2. Dispersal 

When considering an invasive species, not only is the primary means of introduction an 

important factor, but so too is the dispersal that follows on after it has become established in 

one area. In this case, the dispersal of C. intestinalis throughout NS and Atlantic waters is 

most likely to be a combination of natural and anthropogenic processes.  

1.3.3.2.1. Natural dispersal 

Natural dispersal of planktonic invertebrate larvae is a major factor influencing the structure 

of benthic adult populations. It is common for recent studies to question the often assumed, 

but rather simplistic, theory that species with early planktonic life-stages have a good 

dispersive capability and ‘open’ populations (Ayre et al., 2009). The ability to accurately 

determine the scale at which marine larvae actually disperse and successfully settle is still 

poor, and remains unknown for many marine organisms (Miller and Morgan, 2013; Salinas-

de-León et al., 2012). Understanding pelagic larval dispersal distance and subsequent  
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settlement is critical given the import role it can play in the formation of new benthic 

populations, as well as maintaining current ones (Lloyd et al., 2012). 

For the majority of ascidians, dispersal takes place during the pelagic life-stages, the extent of 

which is generally limited to a scale of metres to kilometres. Due to their non-feeding, short-

lived larvae, ascidians cannot disperse large distance (Lambert and Lambert, 1998). In regard 

to C. intestinalis, limited dispersal capabilities can be explained by the physical environment 

in which C. intestinalis tends to frequent, as well as biological processes exhibited by the 

organism. C. intestinalis tends to inhabit semi-enclosed or sheltered water bodies (Petersen 

and Svane, 1995), such as inlets and bays. This tends to reduce the exposure of planktonic 

larvae to hydrodynamic conditions that could increase dispersal of the planktonic life-forms. 

Indeed, a study in Nova Scotia (Howes et al., 2007) found that sheltered sites experienced 

greater C. intestinalis recruitment, in successive years, when compared to nearby sites 

exposed to stronger hydrodynamic forces, such as waves. Dispersal models have 

demonstrated that without the aid of anthropogenic vectors, the limit of dispersal for C. 

intestinalis does not tend to extend beyond the bay within which the adult population is 

located (Kanary et al., 2011; Petersen and Svane, 1995). This suggests that population 

establishment and spread may be particularly susceptible to local abiotic conditions.  

As for a dispersal-limiting biological processes exhibited by C. intestinalis itself, eggs are 

often released in mucus strings that can attach directly to the adult or drift off and attach to 

substrate nearby (Svane and Havenhand, 1993), a factor that may lead to aggregated 

settlement. Eggs that are released without mucus strings will sink in still water due to their 

negative buoyancy, adhering to available substrate (Berrill, 1947). This reinforces the limited 

dispersal already dictated by the surrounding hydrodynamic conditions.  

Predation has also been suggested as a reason for spatial constriction of C. intestinalis 

populations. It has been shown that fishes and sea-stars rely on C. intestinalis as a food-

source in Norway (Gulliksen and Skjæveland, 1973), while crabs have also been documented 

as using C. intestinalis as a food source in Atlantic Canada (Carver et al., 2003). Micro-

predators have also been described to feed on a variety of juvenile ascidians, C. intestinalis 

amongst them (Osman and Whitlatch, 2004, 1995). 

The total length of time from gamete release to larval settlement is an important factor in 

determining the potential dispersal distance of C. intestinalis. The longer embryonic and 

larval development takes, the greater the potential for dispersal is. These development times 

vary with temperature. Embryonic development time consistently decreases with an increase 
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in temperature, with a reported range for North Atlantic populations anywhere between < 24 

h to 63 h, depending on the temperature and location (Dybern, 1965; Svane and Havenhand, 

1993). Larval development and survival is also temperature dependent, with variable times 

reported in the literature. Under laboratory conditions, the upper time limit of the larval stage 

tends to be reported approximately as five days (Collin et al., 2013). Despite this, it is thought 

that under natural conditions the larval stage is likely to be closer to hours than days, with 

most settlement occurring within 24 hours (Havenhand and Svane, 1991; Svane and 

Havenhand, 1993). Salinity and pH conditions have also been shown to affect larval 

metamorphosis and survival (Dupont et al., 2008; Renborg et al., 2013), playing a potential 

role in the length of time larvae are in the pelagic phase. 

1.3.3.2.2. Anthropogenic dispersal 

Ascidians are prominent in the overarching global trend of a significant increase in 

introductions and spread of NIS (Ricciardi et al., 2013), thus increasing the number of 

biological invasions. This trend can be predominantly attributed to the simultaneous increase 

in the quantity and size of commercial vessels, as well as recreational boating, rather than a 

change in the natural dispersal mechanisms of ascidian species (Lambert and Lambert, 1998).  

As predicted by Carver et al. (2003), the range expansion of C. intestinalis in NS (Fig. 1.3 - 

Fig. 1.7), evident throughout field monitoring carried out between 2006-2009, is most likely 

due to the translocation of adult individuals attached to boat hulls from one area of infestation 

to a suitable location previously not subjected to infestation (Sephton et al., 2011). Zhan et al. 

(2012) added further weight to this argument, finding that the haplotype diversity of 

neighbouring populations in NS and PEI was vastly different at times, while very similar 

genetic patterns were present in populations much further apart than is reasonable to expect 

resulted from natural dispersal. The most likely cause for these patterns is the movement of 

individuals via recreational and commercial boats. In addition to anthropogenic vectors, 

anthropogenic influences are increasing the frequency and intensity of storm events (Pachauri 

et al., 2014). This could potentially increase the number of extraordinary dispersal events due 

to storm surges.  

1.3.3.3. Settlement 

Unlike a number of other ascidians, C. intestinalis does not demonstrate gregarious 

settlement, but the presence of adult aggregations do seem to affect the settlement of larvae 

due to their influence on water flow patterns (Havenhand and Svane, 1991). Rius et al. (2010) 
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came to a similar conclusion when they studied the effects of conspecifics on the settlement 

of larvae, finding that C. intestinalis adults do not appear to have any influence over larval 

behaviour due to chemical cues. Rather, the physical conditions either created by adults or 

environmental conditions play a greater role.  

C. intestinalis larvae have been shown to sink to greater depths where light intensity is lower, 

and then proceed to swim upwards to find a darker settlement site (Howes et al., 2007; Rius 

et al., 2010). Despite the preference for settlement on shaded substrates, Rius et al. (2010) 

found that under laboratory conditions, when the larvae were provided with no choice 

between shade and no shade on experimental settlement surfaces, the same proportions 

settled on the bottom, sides and top of the experimental chambers, indicating that C. 

intestinalis larvae will settle at the same rate in light conditions when no dark substrate it 

available. The preference for dark conditions and the habit of sinking initially or swimming 

upwards leads to the majority of C. intestinalis individuals in the field found on downward 

facing substrate (Rius et al., 2010).  

1.3.3.4. Recruitment and adult stage 

C. intestinalis recruitment in NS appears to experience two peaks per growing season, 

typically one in late spring/early summer and another in late summer/early autumn. Carver et 

al. (2003) observed a peak in recruitment in May-June, with a second event peak occurring in 

August-September of 2000 in Lunenburg Bay, NS. A similar two-generation recruitment 

cycle was noted by Howes et al. (2007) during a monitoring program in nearby Mahone Bay, 

NS from 2002-2005. Individuals mature rapidly, in a matter of weeks (8-10), with 

reproduction reliant on size rather than age, and exhibit a high reproductive output (Carver et 

al., 2006). C. intestinalis sampled in NS have a maximum body length of ~ 140 mm 

(Ramsay, 2009). Fecundity of NS individuals is suggested to be in the region of a total 

lifetime production of 12,000 eggs (Carver et al., 2006). This figure is relatively consistent 

with populations of sampled in Scandinavia by Petersen and Svane (1995) who estimated a 

total lifetime fecundity of 10,000 eggs per individual. In northern European waters, the life 

cycle of C. intestinalis is between 12-18 months, with the growth and longevity of individuals 

thought to be predominantly influenced by food supply and temperature (Carver et al., 2003). 

In southern Scandinavia most individuals frequent depths of c. 25m and shallower, but 

populations at depths of 100 m and deeper have been recorded (Dybern, 1967). The highest 

rate of recruitment in a study carried out in NS always occurred at 4.5 m with little or no 

recruitment at depths of 0.5, 12.5 or 16.5 m (Howes et al., 2007). This pattern of preferable 
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settlement and recruitment at a depth of 4.5 m is particularly relevant given that it’s a 

common depth that mussel lines are suspended at. Most studies that have specifically 

observed or noted the type of hydrodynamic conditions that C. intestinalis tends to grows in 

have focused on the difference between wave exposed sites compared to more sheltered sites, 

finding that it prefers sheltered and low flow sites (Carver et al., 2003; Howes et al., 2007; 

Petersen and Svane, 1995). In my study, I am primarily monitoring growth within sheltered 

habitats and therefore exploring the effect of varying water flow within sheltered regions. 

Some studies have investigated the stress tolerance of C. intestinalis adult individuals at the 

gene expression level, generally focused on the heat shock protein chaperones and 

endoplasmic reticulum chaperones (Fujikawa et al., 2009; Kawaguchi et al., 2015; Sato et al., 

2015; Serafini et al., 2011). C. intestinalis is suggested to be a species capable of responding 

to a wide range of stress via molecular mechanisms, but the degree to which this is variable 

amongst populations and how it relates to growth is not yet clear. 

 

1.3.4. Why is C. intestinalis a successful invader? 

Given many tunicates display what would appear to be a highly localized dispersal pattern, 

the aid provided by global shipping networks, aquaculture trade and recreational boating to 

overcome the barrier of dispersal has also greatly increased their prevalence (Ramsay et al., 

2008a), where they otherwise would not have had an opportunity to establish populations 

(Rigal et al., 2010). Mechanisms presented to explain the success of tunicates at colonising 

and establishing substantial populations on both natural and artificial substrates are “early 

onset of reproduction”, “high reproductive rates”, and “fast colonization and growth rates” 

(Lutz-Collins, 2009). It takes a relatively small period of time before ascidians reach sexual 

maturity due to their rapid growth rate, which in unison with what can be a prolonged 

breeding season can lead to a rapidly established breeding population from only a handful of 

individuals (Lambert and Lambert, 1998). Tunicates (introduced and native) are strong 

spatial competitors and prominent biofouling organisms. At times they make up 100% of the 

biofouling community (Carman et al., 2010), and they are a problem on a global scale 

(Adams et al., 2011; Fletcher et al., 2013). Artificial habitat is provided by aquaculture in 

areas such as estuarine environments where they would normally be lacking in hard substrate 

naturally available for benthic species, such as tunicates (Woods et al., 2012). The theory that 

the availability of unused resources, such as space, can provide a suitable environment for 
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invasion (Davis et al., 2000) is a potential explanation for the success of C. intestinalis in 

artificial environments where there is an abundance of unoccupied space for individuals to 

establish. The provision of optimal substrate, at a suitable depth may have contributed to 

localised explosions of C. intestinalis populations (Howes et al., 2007).  

But why is C. intestinalis the prevalent tunicate implicated in aquaculture biofouling in areas 

where multiple NIS and invasive tunicates have been recorded? In PEI, four introduced 

tunicates species of great concern have been recorded in the recent past (Ramsay et al., 

2008a). Despite a well-known invasive solitary tunicate, Styela clava, being present in PEI 

waters since 1997, C. intestinalis experienced a rapid rise to being the dominant fouling 

species in PEI. It had all but eradicated the previously dominant S. clava within two years of 

the first documentation of its presence in the Brudenell estuary (Ramsay et al., 2008a). The 

breeding season of C. intestinalis in NS is not characteristic of the typical reproductive cycle 

as described from its native range by Dybern (1965). There it is relatively confined to a few 

months in the summer and generally occurs in mature individuals (> 1 year old). In NS it 

displays a prolonged reproductive season and individuals reach sexual maturity in weeks to 

months (Ramsay et al., 2008a). C. intestinalis gains an advantage over other tunicate species 

through earlier recruitment due to a commencement of the reproductive cycle at lower 

temperatures, e.g.  C. intestinalis begins at 8°C, while S. clava begins its reproductive cycle 

when water temperatures reach 12°C (Ramsay et al., 2008a). This early start compared to 

other biofouling species is crucial in an environment where  competition for space is high 

(Lambert, 2005). There is a possibility that C. intestinalis can experience three generations 

within a single season, while it is regular for new recruits to reproduce in their first year 

(Ramsay et al., 2008a). High propagule pressure is important for successful invasion, as 

highlighted in sec. 1.2.4., and C. intestinalis checks all the boxes in this regard. High 

fecundity coupled with the hydrodynamic patterns and short-lived planktonic life-stage that 

lead to localised settlement result in the formation of dense aggregations displaying a 

spatially heterogeneous but locally abundant population distribution (Howes et al., 2007). 

Rius et al. (2010) suggest that this behaviour, much like true gregarious behaviour can be a 

prerequisite or advantage when it comes to successfully invading when introduced. As well 

as high reproductive capacity and settlement early in the year in dense space occupying 

aggregations, C. intestinalis also seems to hinder the settlement of other species once it is 

established due to its unsuitable soft tunic and mucoidal surface (Ramsay et al., 2008a). In 

regard to the popular hypotheses explaining successful invasions discussed in sec. 1.2.4., 
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there is still much we don’t know about C. intestinalis. Little is known about the parasitic 

loading effect that could be introduced with C. intestinalis. Although, a risk assessment 

survey completed by experts in this field suggests that harmful parasite introduction with C. 

intestinalis was deemed to not be of major concern, in comparison to the other impacts C. 

intestinalis has on the introduced environment (Therriault and Herborg, 2008b). No work has 

been conducted on the potential positive effect of parasite release in the introduced range and 

how this may help C. intestinalis establishment and spread. It is possible that C. intestinalis 

benefits from reduced predation in the introduced range. Although feeding trials showed that 

individuals were preyed upon by Atlantic rock crabs, it is unclear how the rate of feeding 

compares to rates of feeding in the native range. Also, green crabs had a lower feeding rate 

on C. intestinalis compared to rock crabs, as well as eating primarily smaller individuals, 

leaving the larger adults (Carver et al., 2006). It is plausible that an ‘invasional meltdown’ 

type occurrence may occur in the field where the green crab invasion problem could assist C. 

intestinalis through the reduction of predators that would prey upon it at a greater rate. In 

addition to different predator types, the main observed habitat for C. intestinalis in introduced 

ranges tends to be artificially engineered environments such as harbours and aquaculture sites 

(Lambert, 2005). C. robusta gains an advantage in artificial environments on the west coast 

of Canada, as the created environment provided a refuge from predators, allowing the 

establishment of large populations (Dumont et al., 2011). A similar scenario could be 

occurring in NS for C. intestinalis, with man-made environments providing a biofouling 

‘playground’.  

When considering a species with a wide tolerance range for many key abiotic variables in the 

marine environment, the conditions of the receiving environment may be considered as less 

important to invasion success. But the fact remains that we can observe this heterogeneous 

distribution of C. intestinalis populations around NS. The extent to which the abiotic 

conditions of the receiving environment influence the successful establishment and spread is 

not yet known. Variable abiotic conditions may be interacting with all the different life-stages 

of C. intestinalis, resulting in changeable spatial and temporal responses of the species.  

1.3.5. C. intestinalis impact 

1.3.5.1. Ecosystem and biodiversity 

A large component of biofouling species are strong spatial competitors, managing to reach 

very high densities or biomass over relatively short spaces of time (Blum et al., 2007). This 
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strong ability to outcompete native species for space is demonstrated by C. intestinalis. Blum 

et al. (2007) conducted manipulative experiments in San Francisco Bay, testing the effects of 

C. intestinalis (more likely C. robusta) on the sessile invertebrate community. Using fouling 

panels made of PVC, three treatment types were implemented: experimental removal of C. 

intestinalis on a weekly basis; a manipulated control that was identical to the experimental 

removal procedure, except no removal was carried out; and a control that remained in the 

water for the duration of the experiment.   

 

Figure 1.8: Left - C. intestinalis individuals finding kelp to be a suitable substrate. Right 

– C. intestinalis completely covering a settlement plate, out of the water. 

The presence of dense C. intestinalis aggregations reduced overall species richness. It also 

reduced the abundance of key species such as Bugula neritina. The communities of sessile 

invertebrates differed significantly depending on the presence or absence of C. intestinalis, 

with some species exhibiting strong associations with C. intestinalis dominant assemblages, 

with others largely absent when it is present. On the whole, the structure of the communities 

was altered significantly by the presence of dense C. intestinalis aggregations, with the 

majority of species negatively affected, with a small number of species having a positive 

association. As well as the effective space occupation of C. intestinalis described,  

 it also provides a poor substrate for other settlers, through the use of antifouling chemical 

defences, strong anti-microbial compounds, and mucus and surface cell sloughing (Blum et 

al., 2007). While this key publication is most likely reporting results from experiments 

carried out on C. robusta, the similarity between the morphology and behaviour of the two 

species suggests that C. intestinalis could influence the surrounding environment in a similar 

fashion.  
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While this experiment clearly shows that high density C. intestinalis assemblages have the 

potential to vastly change community composition, it is unclear how the effects recorded in 

this experiment would translate on a larger spatial and temporal scale. Blum et al. (2007) 

hypothesise that other NIS of ascidians known to have achieved similar high density 

invasions in their introduced ranges have the potential to significantly affect community 

structure. Given the growing trend of tunicate invasion around the world, this could lead to 

drastic changes in community richness, with unknown consequences for ecosystem 

functioning.  

The effects of C. intestinalis cover on mobile fauna is an area of limited research (Blum et al., 

2007). A study carried out by Lutz-Collins (2009) did investigate the effect of C. intestinalis 

fouling on native species with different levels of mobility that are associated with mussel 

lines. While they found the fully sedentary species to be most affected, there is one obvious 

drawback in the study’s design. It took advantage of pre-existing differences between 

biofouling levels rather than using a manipulative experimental approach. This could lead to 

different effects on the native groups between differing fouling intensities due to other 

factors, such as food availability, hydrodynamic conditions, abiotic influences and a number 

of other potential conflicting factors (Fletcher et al., 2013).  

The nature of studies carried out using artificial panels replicates the process of C. intestinalis 

infestation on artificial substrates such as docks, aquaculture gear and boats. It is plausible 

that if C. intestinalis establishes assemblages on natural substrate, the impacts would be 

consistent with those documented on artificial substrates. What is presumably C. robusta has 

been recorded as an introduced species in California as early as 1917, and remains abundant 

to this day, while some of the native benthic species previously documented as being 

abundant are now considered rare or have disappeared from harbours completely (Lambert 

and Lambert, 1998). This pattern describes the potential for long-term structural changes in 

biological communities that co-occur with C. intestinalis infestations. It certainly holds the 

potential to contribute in the demise of some previously abundant native species. 

1.3.5.2. Social impact 

The acknowledgement that ascidians are a key group of marine fouling organisms that have a 

significant effect on aquaculture operations is not a recent occurrence, with studies such as 

Yamaguchi (1975) investigating the growth and reproductive cycles of four ascidians well 

known for their disruptive characteristics. In particular, C. intestinalis fouling of shellfish and 
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aquaculture equipment has a significant economic impact on mussel farms around the world 

(Robinson et al., 2005), significantly increasing production and processing costs (Comeau et 

al., 2012). Biofouling communities can add significant weight to aquaculture systems, which 

in turn require additional buoyancy and anchoring, a further expense for the farmers (Sievers 

et al., 2013). The additional weight caused by C. intestinalis fouling can even lead to entire 

crops of mussels being lost, in severe cases (Comeau et al., 2012). Another major problem is 

the additional weight added to the boat when harvesting mussels, thereby reducing efficiency 

(Stairs, pers. comm.). These combined effects of C. intestinalis fouling can lead to mussel 

farm closure, resulting in a negative impact for local economies, but also jeopardising an 

important resource for future food security. 

1.4. Prevention and mitigation efforts 

1.4.1. Prevention of introduction and establishment 

The only surefire way to prevent biological invasion problems posed by NIS is to stop 

introductions occurring. The scale of this task, especially in the marine environment is 

colossal and virtually impossible, even on a regional scale. In order to maximise the 

effectiveness of resources available to monitoring and invasive species managements, 

accurate risk assessments of potential introductions are essential. Such a risk assessment has 

recently been devised for the Canadian marine environment (Drolet et al., 2015) and 

continual improvements and adjustments are essential to maintain the efficacy of such 

methods. Using these risk assessments can minimize the waste of resources monitoring and 

preventing introductions of NIS that pose little risk to the introduced environment. In the 

marine environment, there has also been an emphasis on understanding the vectors that pose 

introduction risk and how to assess these vectors and model them in order to best allocate 

management resources (Floerl et al., 2009; Murray et al., 2013; Ruiz and Carlton, 2003; 

Sylvester et al., 2011). 

While C. intestinalis has already been introduced in NS and other Atlantic Canadian waters, 

it is still vital that monitoring similar to that carried out by Sephton et al. (2015, 2014, 2011) 

continues in order to understand the extent of issue and how best to counter it. 

1.4.2. Reduce spread and impact post-introduction 

Some success has been achieved in limiting the spread of tunicates in PEI through the 

‘Introductions and Transfers permitting process’, but this has no authority over vectors 
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outside of the aquaculture industry, such as recreational boating and can’t prevent natural 

dispersal (Kanary et al., 2011). C. intestinalis dispersal modelling has been conducted in PEI 

in an effort to understand the potential for natural dispersal (Collin et al., 2013; Kanary et al., 

2011).These dispersal estimates have assisted in developing the best possible management 

protocols to prevent further sites falling under infestation, a scenario that would have severe 

economic impacts. The results from the model emphasised the importance of regular 

maintenance of potential settlement nodes for C. intestinalis, which range from buoys to 

wharfs. This could minimize the risk of a stepping-stone process occurring, allow the spread 

of C. intestinalis within harbours and bays, especially ones that are currently not infested. 

Collin et al. (2013) stress the importance of microscale localized modelling in unison with 

macroscale species distribution models as a useful tool in combatting nascent populations of 

invasive species. Dispersal of invasive species is a complex myriad of biophysical factors 

including species-specific life-history characteristics that are often variable given abiotic 

factors interacting with physical processes, such as currents and tidal movements, combining 

to make it very difficult to establish the extent of possible dispersion with accuracy (Kanary 

et al., 2011). This emphasises the importance of implementing management plans based on 

the most recent and comprehensive research available, as well as striving to improve the 

available knowledge about dispersal and population establishment. Collin et al. (2013) 

suggest that a stricter management of vector movement is vital in areas where known 

problematic species are discovered. They suggest that the problem could have been limited 

further by immediate vector management in PEI, due to natural dispersal being less likely to 

transport C. intestinalis from bay to bay. 

1.4.3. Long-term mitigation and control  

Biological control is an option that has been investigated to attempt to control C. intestinalis, 

again in PEI. Approximately 73,000 Atlantic rock crab, Cancer irroratus, were caught and 

transplanted to an aquaculture site in an estuary of PEI, as this is a species that has been 

shown to prey upon C. intestinalis (Comeau et al., 2012). A number of the transplanted crabs 

were fitted with tracking equipment to investigate their movements. The transplanted 

individuals did not remain in the area they were moved to and Comeau et al. (2012) do not 

believe this is a viable means on biological control for C. intestinalis infestation. 

Various efforts have been made to investigate potential management plans that mussel 

farmers could implement to limit the loss of mussels, as well as reducing mitigation costs. 
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One such study was carried out by Ramsay et al. (2008b), who considered the effect of 

mussel stocking density on C. intestinalis infestation in PEI. Using three levels of mussel 

density (high, medium, and low), several characteristics of C. intestinalis growth were 

monitored at several points in the growing season. The hypotheses being tested were: higher 

mussel density stocking would reduce the number of viable C. intestinalis larvae for 

settlement due to a larger amount of feeding; the surface area per mussel is lower at a high 

density allowing less space for C. intestinalis to utilise; and that as mussels display self-

thinning, the mussels that are subject to C. intestinalis settlement fall off due to stress on the 

byssal attachment leaving unfouled mussels attached. The study highlights the temporal 

differences exhibited in C. intestinalis populations, with significant differences in C. 

intestinalis biomass between different stocking densities in August, but by October no 

differences were evident. The length of C. intestinalis individuals was also measured, with 

lower density stocked mussel socks displaying individuals of the greatest length, both in 

August and October. The results of this study did support the self-thinning hypothesis, as by 

the end of the study period there was no difference in mussel length or condition between 

different densities. The expectation is that the mussels that are present in higher density will 

experience lower growth rates and worse condition than those of stocked at a lower density. It 

is possible that the effects of C. intestinalis fouling caused the unexpected results (Ramsay et 

al., 2008b). This study emphasises that the timing of mitigation efforts are likely to be 

important, while a combination of factors such as density of stocking and timing of treatment 

to eradicate or limit C. intestinalis growth could be key (Ramsay et al., 2008b). A range of 

other treatment regimens have been tested, including desiccation trials, pressure washing, 

aeration/turbidity treatments, chemical sprays, and other chemical applications (Carver et al., 

2003; Hopkins et al., 2016; Locke et al., 2009; Lowen et al., 2016; Paetzold and Davidson, 

2011). The treatment of choice depends on a variety of factors such as effects on the cultured 

organism, environmental concerns, cost and timing of treatment, with some treatments, 

particularly in combination being effective, if costly and time consuming. 

1.5. Research objectives 

The underlying outcome of this research, regardless of the success in explaining abiotic and 

C. intestinalis population relationships was establishing baseline information relating to the 

degree of variability between populations of a species of importance on a large spatial scale. 

Whether C. intestinalis is viewed as a problem or perhaps as a potentially useful species (the 

first thing anyone asks is “What can you use it for?”), the fact remains that little is known 
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about its population dynamics and this needs to be rectified. In addition to this, a 

comprehensive abiotic dataset was collected for important variables in the marine 

environment. To ascertain what relationships were observable given the abiotic variables 

being monitored, I tested a range of hypotheses (in the form of models) to determine the most 

likely explanatory combination of abiotic variables to account for the observed C. intestinalis 

data. Any relationships between C. intestinalis abundance and environmental conditions may 

help to refine assessment of aquaculture sites for their risk of infestation, affecting 

profitability of both existing and potential future sites.  

Invasion ecology is an expanding field making it desirable to understand factors that lead to 

population increases in species of interest. This species-specific work in turn could contribute 

to general understanding of the spread and success of other invasive species, therefore 

informing future prevention and mitigation strategies. If successful, this approach to 

modelling could be transferable to other troublesome biofouling species, providing a 

framework to approach a similar research project.  

Finally, with increasing pressure on the environment from global change, baseline monitoring 

provided by research, such as this study, is essential for assessing the scope of such changes. 
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2. Materials and methods 

2.1. Field monitoring sites 

2.1.1. Site selection 

I selected monitoring sites aiming to evenly represent a spectrum of C. intestinalis abundance 

from absent to high abundance. I decided to limit the selection to sites that are predominantly 

on the Atlantic coastline of NS. Testing within one major oceanographic region was an 

attempt to limit potential confounding effects outside of the abiotic variables selected for 

monitoring. The main contributing factor in the selection process was the historical presence 

and abundance records of C. intestinalis. Historical records were provided by the DFO 

(Sephton, Pers. Com.). I also wanted sites to span the entire NS Atlantic coastline, as evenly 

as possible. The location (Fig. 2.1) and additional information (Table 2.1) are provided for 

each site.  

Table 2.1: The 16 sites monitored in 2014 and 2015 (sites in italics were only monitored 

in 2015), including the name, site code, type of site, and GPS co-ordinates. 

Name Code Type Latitude Longitude 

Camp Cove CC Harbour 43.724171 -65.839937 

Cape Canso ZZ Marina 45.334817 -60.985151 

Dingwall DW Harbour 46.903055 -60.460756 

Falls Point FP Harbour 43.531117 -65.740845 

Indian Point IP Mussel lease 44.457128 -64.306808 

Ingomar IN Harbour 43.563249 -65.364162 

Little River LR Harbour 46.446528 -60.458987 

Louisbourg LB Harbour 45.917759 -59.971003 

Petit-de-Grat PG Harbour 45.507234 -60.960693 

Port Bickerton PB Harbour 45.104438  -61.721917 

Ship Harbour SH Mussel lease 44.808099 -62.846649 

St Ann’s Bay SA Mussel lease 46.265983 -60.583567 

St Peters SP Marina 45.661397 -60.874862 

Venus Cove VC Sheltered Dock 45.614638 -61.390123 

Wedgeport WP Harbour 43.713973 -65.968626 

Yarmouth Bar YB Harbour 43.815751 -66.148124 
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Figure 2.1: Distribution map of the sites monitored during this project. The 13 sites 

with grey markers were monitored in 2014 and 2015 (Core Sites), while the 3 sites with 

black markers were only monitored in 2015 (New Sites). 

2.1.2. Site groupings for analyses 

Thirteen sites were selected in 2014, while three additional sites on top of the original 2014 

sites were chosen for the 2015 monitoring season. To work around the missing data 

constraints for some analyses, as well as for theoretical reasons, it was necessary to categorise 

sites into different groups. The first group of thirteen sites monitored in both 2014 and 2015. 

are referred to as the ‘core sites’. Three additional sites were monitored in 2015, Louisbourg, 

Ingomar, and St Peters. St Peters’ (SP) data was retroactively removed from the dataset 

before any analyses were conducted. This is due to the major difference in waterbody type 

between SP and all other sites. SP is located in the southern region of the Bras d’Or Lakes in 

Cape Breton. All other sites are harbours, mussel leases or sheltered coastal sites. These are 

all nearshore marine environments compared to the saline lake environment of the Bras d’Or 

Lakes.  

The expanded group of 15 sites in 2015 is referred to as ‘expanded sites’. I also categorised a 

group excluding sites with no C. intestinalis presence. This is due to the difficulty in 

distinguishing the difference between a site where C. intestinalis is absent because it has 

simply never been introduced into that site, or whether an introduction has taken place in the 

past but environmental conditions have resulted in the inability of the introduced individuals 
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to establish a population. When working exclusively with sites at which C. intestinalis is 

present (regardless of abundance), the groups are referred to as either ‘core sites - minus 

absent’ or ‘expanded sites - minus absent’. 

2.2. Biotic monitoring  

2.2.1. Settlement collector design 

The presence and abundance (percent cover) of C. intestinalis, as well as any other sedentary 

biofouling species, was monitored using standard settlement collectors consistent with 

previous monitoring efforts carried out by DFO (Sephton et al., 2011). Each settlement 

collector (Fig. 2.2) consists of three polyvinyl chloride (PVC) settlement plates, 

polypropylene rope (8 mm diameter), and a lead weight (250 gm). Each PVC plate had 

dimensions approximate to 10 cm x 10 cm x 3 mm, with a hole drilled in the centre for the 

collector rope to thread through. All PVC plates were all lightly sanded in a consist manner. 

 

Figure 2.2: Left – The setup of the individual settlement plates; Right – Examples of the 

entire collector. 

The three plates were evenly spaced at intervals about 25 cm in length along the rope. A knot 

in the rope above and below each plate prevented them from moving freely up or down the 

rope. The lead weight was tied onto the bottom end of the rope about 25 cm below the 
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bottom-most plate. This was to weigh the collectors down once deployed in the water, 

ensuring the collectors hung vertically in the water column. The knots in the rope were 

positioned so that plates were not entirely constricted in their movement. The plates were free 

to spin around the rope they were attached to, as well as having the potential to move roughly 

1 cm along their vertical axis. A small piece of flexible plastic tubing (Fig. 2.2) was placed 

between each of the plates and the bottom knots in order to minimize friction caused by the 

plate movement around the rope. Once the plates were tied onto the rope with the plastic 

tubing and knot below them, their orientation when in the water column was horizontal, with 

an acceptable degree of variation depending on the given knot, plastic tube and plate. 

2.2.2. Collector deployment: intra-site location and depth 

Permanent collectors (cumulative growth) that remained in the water the entire monitoring 

period, as well as monthly collectors (monthly growth) that were replaced during each site 

visit, were deployed. The quantity of collectors deployed at each site can be found in Table 

2.2. When deployed, the collector plates were suspended horizontally in the water at 1.5, 1.75 

and 2 m depth, with the lead weight not touching the substrate (with three exceptional sites – 

see below).  The collectors were deployed relatively close together at each site since my goal 

was to test inter-site variability and minimize intra-site variability.  In addition, this approach 

minimized the distance between the single set of data loggers at each site and the sampling 

collectors, improving the correspondence between the abiotic and biotic data collected.  

Typically, collectors were hung from the side or between docks (tied to moorings or suitable 

fixtures), and spaced every 2 m to minimize the chances of two collectors tangling with each 

other.  Deployment was sometimes constrained by dock geometry or minimizing interference 

with other dock users. At Indian Point and St Ann’s Bay, the collectors were tied directly to 

the long-lines used in mussel aquaculture. At the remaining mussel lease, Ship Harbour, an 

independent float was used to suspend all collectors (separated by 0.5 m due to space 

constraints).  At Yarmouth Bar, Wedgeport, and Ingomar, the shallow harbour did not allow 

for settlement collectors to be submerged to a depth of 1.5 m at the uppermost settlement 

plate. Instead, the uppermost settlement plate was submerged at a depth of 1 m or 0.5 m 

depth.  
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Table 2.2: The number of collectors deployed in 2014 and in 2015. 

Year Permanent 

Collectors(PC) 

(per site) 

Monthly 

Collectors (MC) 

(per site) 

PC 

Exceptions 

MC 

Exceptions 

2014 3 2 WP (4) Not applicable 

2015 5 2 IP (4), SA (4) SA (1) 

 

2.2.3. Settlement plate monitoring 

Settlement plates were photographed during each monthly site visit (see Appendix A for 

dates of site visits). These images were used to track the growth of the biofouling community 

on each plate over the monitoring period (representative plate images for each site in 

Appendix F).  Sites were visited at approximately four week intervals. The time varied from 

month to month due to circumstances such as inclement weather conditions and availability 

of personnel at mussel leases to provide assistance. In general, the order in which the sites 

were visited was kept as consistent as possible. The large spatial range over which 

monitoring was being conducted resulted in a lag between the first and last site visit in any 

given measurement period. I aimed to minimise the time between the first site sampled and 

the last site sampled in any given measurement period, while keeping the time between 

successive visits to each site as consistent as possible. The southern shore of the NS mainland 

experiences higher water temperatures earlier in the year when compared to Cape Breton, in 

particular. This is why I decided to commence the site visits in the southern region of 

mainland NS and proceeding north. 

2.2.4. Settlement plate holder 

The settlement plate holder (Fig. 2.3) was manufactured in the St FX University Machine 

Shop by Steven MacDonald. Its purpose was to hold the settlement plates while they were 

being photographed, so that the plates were horizontal and could be orientated consistently 

for every image. It is made up of three identical PVC sections, each of which was just large 

enough for the settlement plates to sit on top of. All four sides of each section had a groove 
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cut out so that the collector rope could rest in them so as not to interfere with the settlement 

plates’ orientation.  

 

2.2.5. Light-box 

A light-box was used while taking pictures of the settlement plates in order to improve image 

quality and provide consistency between images. The main purpose of a light-box is to 

eliminate all ambient light from the environment in which the images are being captured. 

This provides the user with an ability to apply a consistent light source to illuminate the 

object of interest to a desired level. The light-box used in this project was made from a 

rectangular window panel plant pot (Fig. 2.3). The internal dimensions of the light-box were 

58 cm x 25 cm x 16 cm. The light source of choice was battery-powered LED lights, attached 

to the interior walls of the lightbox (Fig. 2.3). Given the aqueous nature of the working 

environment, glare caused by the reflection of light on the wet surfaces of both biological and 

inorganic objects was an issue that needed to be dealt with.  

 

 

Figure 2.3: Top left – Exterior of the lightbox; top right – Interior of the lightbox; 

bottom right – End-on view of the settlement plate holder; and bottom left – Side-on 

view of the settlement plate holder. 

This issue was countered by covering the LED lights with a semi-transparent white material. 

Both waterproof labels and white garbage bags were used for this purpose, folded over until 
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the desired light intensity was found. This covering acted as a light diffuser, thus reducing 

glare on wet surfaces and improving the overall quality of the images obtained. When images 

of settlement plates were being taken, a foam board acted as a base underneath the light-box. 

These foam boards were spray painted black so that light did not reflect of the surface of the 

foam. The settlement plate holder would be placed on top of the foam board. The settlement 

plates would be placed appropriately onto the holder. Then the light-box was placed over the 

top and images of each plate were taken through the holes cut in the top of the light-box. 

2.2.6. Image processing and analysis 

Seascape (Teixidó et al., 2011) and photoQuad (Trygonis and Sini, 2012) are free software 

packages specifically designed for the image analysis of benthic marine communities. Both 

can be useful for a range of ecological purposes and they were considered and tested for use 

in this project. However, the semi-automated procedures that each program uses were not 

ideal for the images in this project. Given the translucent nature of C. intestinalis, the region-

of-interest selection implemented by specialized algorithms within each program was 

inaccurate beyond an acceptable level. A manual approach for calculating species percent 

cover was chosen instead.  

 

Figure 2.4: An example of a settlement plate image, cropped, scaled and ready for 

percentage cover analysis with the grid overlay applied in ImageJ. 
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All images were cropped so that the extremities of the settlement plates were the new border 

of the images. Using a batch conversion in ImageJ, all of the cropped images were scaled so 

that their dimensions were all identical (3000 x 3000 pixels). Using a custom macro in 

ImageJ, a grid consisting of 100 grid cells was overlaid onto each image (Fig. 2.4). Given the 

approximate size of each settlement plate (c.10 x 10cm), each grid cell is approximately 1 x 1 

cm². The selection rule chosen for specifying the species present in each grid-cell was as 

follows: if 50% or more of a given cell is occupied by a single species, then that cell is 

counted as one cell for that species using the ‘Cell Counter’ application in ImageJ. Only 

sessile species that attach directly to the settlement plates were considered for this percentage 

cover calculation. Mobile invertebrates and epibionts were not considered. 

When there were no clear, distinguishable species visible on the settlement plates, but it was 

clear that there was a layer of unidentifiable growth (most likely a biofilm), the cells were 

assigned a generic term of ‘marine slime’. If no single species occupied 50% or more of the 

space in a given cell, when there were three or more species in a single cell, these cells were 

categorized as ‘Other’. The underlying logic of the 50% or greater rule is that the number of 

cells with less than 50% of a species will on average balance out with the cells that have 50% 

or more. All grid-cells obscured by the collector rope were discounted from the total number 

of grid-cells used to calculate the final percentage values.  

2.3. Abiotic monitoring 

2.3.1. Environmental data loggers 

Table 2.3: A description of all the environmental data-loggers used in 2014 and in 2015. 

The data loggers used to measure each abiotic variable are specified by year. The data 

loggers were used at all sites unless specified in brackets. The full logger names follow: 

WQL = WTW WQL-pH Logger; CT2X = INW AquiStar® CT2X Conductivity Smart 

Sensors; HOBO-G Accelerometer = Onset HOBO Pendant® G Data Logger; HOBO-

Temp. = Onset HOBO Pendant® Temperature/Light Data Logger; and YSI 600XLM = 

YSI 6-Series 600XLM Multiparameter Water Quality Sonde. *The default temperature 

data logger in 2014 was the CT2X, but WQL recordings were used when CT2X was not 

available.  

 Temperature Salinity pH Water motion 

2014 CT2X & WQL* CT2X 

 

WQL 

(Except ZZ: No 

pH in 2014) 

 

HOBO-G 

Accelerometer 
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2015 

 

YSI 600XLM 

(Except IN & LB: 

HOBO-Temp.) 

 

YSI 600XLM 

(Except IN & LB: 

WQL-pH) 

YSI 600XLM 

(Except IN & LB: 

WQL-pH) 

HOBO-G 

Accelerometer 

 

2.3.2. Data-logger calibration 

2.3.2.1. INW AquiStar
® 

CT2X Conductivity Smart Sensors 

A two-point (30 mS/cm and 70 mS/cm conductivity solution) calibration was performed 

immediately prior to deployment in 2014. AquiStar’s technical support advice was that one 

calibration at the start of the monitoring was sufficient. In hindsight, a monthly calibration 

during site visits would have been better. In 2015, one-point (50 mS/cm conductivity 

solution) calibrations were performed during the site visits for the three sites where CT2X 

loggers were used. Product code “HI 7030” Conductivity Calibration Solution. 12.88 mS/cm 

@ 25°C. Hanna Instruments Inc. 

2.3.2.2. WTW WQL-pH Logger 

A two-point calibration (pH 7 and pH 10 buffer solutions) was carried out prior to 

deployment and then repeated during every site visit.  

2.3.2.3. Onset HOBO Pendant
® 

G Data Logger 

Informal water flow tests were conducted on a number of the accelerometers in controlled 

flow tanks prior to deployment to ensure that the measurement of acceleration was providing 

a relative measure of degree of flow and variability in water flow. 

2.3.2.4. YSI 600XLM 

For the pH probe, a two-point calibration (pH 7 and pH 10 buffer solutions) was carried out 

prior to deployment and then repeated during every site visit.  

For the conductivity probe, a one-point (50 mS/cm conductivity solution) calibration was 

carried out prior to deployment and then repeated during every site visit. 

2.3.3. Data-logger losses and repairs 
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All bar one of the accelerometers were lost during the first month of 2014 fieldwork. Timing 

of site visits and availability of replacements determined the amount of data lost for each site. 

Two measurement periods of water motion recordings were lost for about half of the sites. 

One measurement period of recordings was lost for the other sites (predominantly the Cape 

Breton based sites). 

Leaking and malfunctions caused a degree of lost data for the WQL pH loggers in 2014, as 

seen in Fig. 3.9 (and for the latter part of 2015 for IN and LB, Fig. 3.10).  

Biofouling of the CT2X data loggers, as well as some cases where calibration was unreliable 

also resulted in some missing and unusable salinity data in 2014 (Fig. 3.7 & Fig. 3.8 ). 

2.5. Abiotic metrics 

Three metrics were devised for each of the four abiotic variables. A minimum (min.), mean, 

and maximum (max.) metric for each of temperature, salinity, and pH. In the case of water 

motion, the variance in acceleration is the value used. So the min. variance in acceleration 

(var. accel.), mean var. accel., and max. var. accel. are the water motion metrics. A value for 

each metric was calculated for every measurement period at every site, so that it matched the 

corresponding C. intestinalis abundance value for the same measurement period and site. 

2.5.1. Mean metrics 

The mean metric for temperature, salinity and pH is simply the mean value of all the 5-min 

interval recordings for a given measurement period. For the mean var. accel. metric, the 

variance between all of the raw readings of the sum of the acceleration across the X, Y, and Z 

axes was calculated and then the mean of the variance was used. This is because the absolute 

value of water motion was measured in acceleration (g) and this value for perfectly still water 

could differ from site to site depending on the depth or angle of the accelerometer. The 

variance between each of the raw measurements provides the relative measure of water 

motion at a site.  

2.5.2. Maximum and minimum metrics 

The potential for introducing error when calculating min./max. values for each abiotic 

variable based on a single raw point measure is high. In addition, it is unlikely that a single 5-

minute period of a low or high abiotic value would unduly affect C. intestinalis. To calculate 

min/max metrics for each abiotic variable for a given measurement period, daily-mean values 

were calculated and subsequently used to determine the max/min metrics. Using the min. 



42 

 

daily mean and max. daily mean as the min/max metrics also allowed for the min/max daily 

variance in acceleration to be calculated for each measurement period. If a single measure 

was used for min/max metrics, then no variance could be calculated and only the mean 

variance in acceleration could be used. 

2.6. Biotic and abiotic data plots 

All biotic and abiotic plots were implemented using R, Version 3.2.2 (R Core Team, 2015), 

an open source software run through RStudio, Version 0.99.489 – © 2009-2015 RStudio, Inc. 

(RStudio Team, 2015). 

2.6.1. Biological data plots 

The cumulative C. intestinalis abundances were plotted at settlement plate unit of 

measurement, by site over time, with the average value for each measurement period plotted 

with a line, using the lattice package in R (Sarkar, 2008). Each year was plot separately. This 

method was chosen given the continuous nature of these data. For the monthly C. intestinalis 

data, the mean abundance for each measurement period by site and year is displayed by bar 

charts using the ggplot2 package in R (Wickham, 2009). This method was chosen as these 

data are independent measures but still represent a progression though time at each site.  

2.6.2. Abiotic data plots 

Heat maps of each of the four abiotic variables were created for both years using the lattice 

package in R (Sarkar, 2008). The daily mean values were used for temperature, salinity and 

pH, while daily variance was used for water flow. Each year was plotted separately. In each 

plot, the sites are ordered from top to bottom by highest overall mean to lowest. Alongside 

each abiotic plot is a heat map plot of the cumulative C. intestinalis abundance, so the visual 

inspection for trends in these data is facilitated.  

2.7. Statistical analysis 

2.7.1. Correlation analysis  

I used Kendall’s rank correlation coefficient (τ) to test the strength of the relationships 

between the mean values of each abiotic variable metric for all the measurement periods and 

the corresponding mean C. intestinalis abundance. This non-parametric correlation was 

chosen above Spearman’s rank correlation coefficient, as while they are perceived to be very 
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similar, it is suggested that Kendall’s tau has some advantages and will be more conservative 

on average (Newson, 2002). The more conservative approach is favoured based on the 

following reasoning. For these data, the results of the correlation analyses should be viewed 

with the large caveat that I recognise it as a very basic form of exploratory analysis to 

highlight the strongest relationships between abiotic variables and C. intestinalis abundance. 

One obvious example of why it is not entirely appropriate is the likely strong relationship that 

would occur between any growth and a natural change in an abiotic variable over time, like 

the increase in temperature over time. Correlation analysis does not adequately account for 

inter-site or inter-measurement period variation, but rather provides a blanket result for the 

general association between the two variables. 

2.7.2. Information-theoretic inference 

I used an information-theory approach to analyse these empirical data, as it is suggested to be 

a sound and appropriate method of inference for observational studies (Burnham and 

Anderson, 2003). (Burnham and Anderson, 2003) have probably done more to promote and 

educate the wider community of researchers about information-theory than just about anyone 

in the last two decades (their classic text having ~ 31,000 citations according to Google 

Scholar). They go as far as to say that when used to analyse observational studies, virtually 

all hypothesis-testing approaches, a more classically recognised form of statistical analysis, 

“have no theoretical justification and may often perform poorly”. This is the reasoning behind 

my decision to focus on fitting explanatory models to the observed data, accounting for 

model parsimony and the size and precision of effects, with less focus on testing for classical 

‘significance’ (Beninger et al., 2012).  This approach does not put any emphasis in the search 

for a ‘true’ model, but rather focuses on selecting the ‘best’ model based on the information 

provided by the observed data (Beninger et al., 2012). This seems appropriate, as the concept 

of a ‘true’ model in such a stochastic environment (marine) appears unlikely. The most 

prominent measure of models’ attributes used in information theory is called the Akaike 

Information Criterion (AIC) (Akaike, 1973). The AIC is a method of ranking the likelihood 

(goodness-of-fit) of a model based on the observed data, and it can be used to evaluate the 

probability of it being the best fit in comparison to other candidate models.  The AIC (Eq. 1) 

is underlined by the process of maximizing the expected log-likelihood of a given model 

through maximum likelihood (ML) methods of estimation (Akaike, 1973). The major 

components that contribute to optimal inference from models fitted via information 

theoretical approaches are: appropriate model specification in relation to the parameters it 
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contains; the estimation of these model parameters; and assessing the parameter estimate 

accuracy (Burnham and Anderson, 2003).  

𝐴𝐼𝐶 =  −2 log(𝐿(𝑚𝑜𝑑𝑒𝑙|𝑑𝑎𝑡𝑎)) + 2𝐾   (1) 

L in Eq. 1 is the likelihood of the model, given the data, and K is the number of model 

parameters.  

I used the second order AIC (AICc) for model comparison, Eq. 2, a modified version of the 

AIC for small sample sizes. 

𝐴𝐼𝐶𝑐 =  −2 log(𝐿(𝑚𝑜𝑑𝑒𝑙|𝑑𝑎𝑡𝑎)) + 2𝐾 +  
2𝐾(𝐾+1)

𝑛−𝐾−1
   (2) 

2.7.3. Preselection of abiotic variables 

In order to reduce cases of high collinearity between abiotic variable metrics, as well as 

making the number of metrics more manageable for model development, a preselection 

process was used. This involved a step-wise removal of one metric from the pair with the 

highest correlation, using Pearson’s r. This process was repeated until there were only four 

metrics remaining and using a selection rule that one metric from each variable was left in the 

final selection of metrics. Pairwise complete observations were used in this correlation 

analysis, meaning the correlation between each pair of variables is computed using only 

complete pairs of observations for the given variables (R Core Team, 2015). 

2.7.4. Mixed-effects modelling: fixed and random effects 

Mixed-effects models include both fixed and random effects and are recognised as a good 

solution when dealing with repeated-measure analysis, as I was (Laird and Ware, 1982). One 

major advantage they have over other modeling techniques is that if there are missing values 

associated with any individual, just the measurement that has missing values can be removed, 

without discounting the entire set of measurements for that particular individual. This was 

especially useful for the 2014 modeling, as there were a lot of missing data. They are also 

particularly adept at accounting for heterogeneous variability at a variety of levels, caused by 

random effects  (Pinheiro and Bates, 2000). Not long ago, the fitting of a model with fixed 

and random effects, required a two-step process, but now it is possible to fit the two 

simultaneously, providing a tool capable of explaining intra-individual variability associated 

with repeated-measurement data (Adame et al., 2008a). Random effects are particularly 
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useful in a model when the aim is to extrapolate results from a given study on a wider spatial 

scale, encompassing areas that were not monitored or tested in the study, as the random effect 

provides a measure of the random variability that is not accounted for by classic fixed 

parameters. This is of importance for us, as any model developed is aimed at a much greater 

area than just the eleven sites included in the model.  

Working in this area is not without its perils though. There are countless definitions (and 

indeed many synonyms) for these two effects throughout the literature. Not only that, there 

are different types of models that include terms with the same name, i.e. a fixed effect, that 

have different fundamental workings and applications. A good example of this is that a fixed 

effect in a mixed-effects model is not the same as a fixed effect in a fixed-effects model 

(sometimes called an unobserved effects model), used commonly in economics (Gunasekara 

et al., 2014). Also, a random effect in a mixed-effects model can mean a very different thing 

to a random effect in common analyses from genetic studies (Skrondal and Rabe-Hesketh, 

2004). As a result of this scope for confusion, I find it useful to assign appropriate terms to 

the effects in mixed-effects models, as it allows for a more intuitive understanding of exactly 

what each of the fixed and random effects are doing.  

The fixed effect is often classically referred to as a population effect, i.e. it is the average 

response (C. intestinalis abundance) that can be accounted for by observed variables (the 

monitored abiotic data) for the entire population (Subedi and Sharma, 2011). Given the 

potential confusion that could arise when discussing multiple C. intestinalis populations 

represented by the different sites in this design, I am going to refer to this fixed effect as the 

‘species-wide effect’. This is to say that this effect is consistent for the study species, C. 

intestinalis, regardless of individual or site. In addition to variation in the response that can be 

accounted for by the observed abiotic variables, there are unknown sources of variance in C. 

intestinalis abundance that vary from site to site. The random effect (or modelled varying 

intercepts (Bafumi and Gelman, 2007)) in this case is accounting for the unknown variability 

that occurs at the different levels of the design, i.e. the site level, in a similar fashion to the 

plot random effect in Adame et al. (2008). As a result, the random effect is called the ‘site-

level’ effect in my models.  

2.7.5. Nonlinear mixed-effects (NLME) model 

I liken this experimental design to an observational epidemiological study in the sense that 

the main aim is to discover and understand relationships between exposure and outcomes 
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(Gunasekara et al., 2014). In this case, I was interested in C. intestinalis exposure to abiotic 

oceanographic conditions, with the response outcome being abundance of C. intestinalis. A 

logistic or sigmoidal S-shaped curve is a very common growth trajectory within biology (Wu 

et al., 2002) and it is the growth curve I decided to model C. intestinalis with in this study. A 

repeated-measure design was used in this observational study, whereby the same settlement 

plates are repeatedly measured through time. The site-level effects discussed in the previous 

section can incorporate within-individual variance between the repeated-measurements, 

accounting for such complexity. 

I used a nonlinear mixed-effects (NLME) model fit by maximum likelihood (ML) estimation 

for all model development (Pinheiro et al., 2015). The model parameter estimates fit by ML 

are the values that present the most likely model given the observed data (Bolker, 2008). The 

likelihood of any given model is our goodness-of-fit metric, the likelihood being the 

probability that these data would occur from the model prediction. The overall approach to 

the growth modelling can be seen in Fig. 2.5, starting from the raw data collection and 

finishing with model validation and predictions. 

All NLME model fitting was implemented in R, Version 3.2.2 (R Core Team, 2015), an open 

source software run through RStudio, Version 0.99.489 – © 2009-2015 RStudio, Inc. 

(RStudio Team, 2015). 
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Figure 2.5: A simplified description of the NLME model development process from data 

collection to model predictions, represented by a flow diagram. Grey dashed arrows and 

grey-fill boxes indicate stochastic processes that can vary within a given candidate set of 

models, while black solid arrows and white-fill boxes are invariant processes within the 

given candidate set of models. TD = top-down and BU = bottom-up. 
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2.7.5.1. Model parameters and formulation  

The nonlinear growth curve model selected for use is comprised of three model parameters. 

The Maximum Population (MaxPop) model parameter determines the maximum potential C. 

intestinalis abundance at a given site. This is the asymptote of the growth curve and in the 

case of this study is bounded by 0% and 100%. The Days50 (D50) model parameter 

determines the time (in days) that it takes for 50% of the maximum population to be 

achieved. The Lag Phase (Lag) parameter influences the shape of the growth curve, but not 

the asymptote (it does alter the time it takes to reach MaxPop) or Days50. It changes the rate 

of growth following its onset. The three aforementioned parameters are unknown and are 

estimated in the NLME models by maximum likelihood (ML) estimation. The remaining 

inputs into the model are all known: the time component; the cumulative C. intestinalis 

abundance; and the abiotic data. The time component in the model is days after deployment. 

So if deployment occurred at a given site on the 120
th

 day of the year (Day N = 120) and the 

first measurement of C. intestinalis occurred at that site on Day N = 150, the days after 

deployment (DaD) value that is input into the model for that datum point is ‘DaD’ = 30. The 

abiotic data are the constituents of the three unknown model parameters, MaxPop, Days50, 

and Lag. Each abiotic metric input into each model parameter technically adds an additional 

parameter estimate to the model. So if temperature and salinity for example were chosen as 

input metrics for MaxPop in a model, then that counts as three parameters. The estimate of 

the intercept for MaxPop, as well as the estimate associated with the temperature and salinity 

parameters within the overall MaxPop parameter. How each of the model parameters 

theoretically determines the shape and size of the growth curve is displayed in Fig. 2.6,  

The NLME model underlying the process is laid out in detail in Lindstrom and Bates (1990), 

but the general form is described here in Eq. (3) as  

𝑦𝑖𝑗 =  ∫(𝜃𝑖 , 𝑥𝑖𝑗) +  𝑒𝑖𝑗,    (3) 

where 𝑦𝑖𝑗 is C. intestinalis percent cover for the jth measurement period of the ith plate, 𝑥𝑖𝑗 is 

the abiotic metric vector for the jth measurement period of the ith plate, ∫  is a nonlinear 

function of the abiotic metric vector and the parameter vector 𝜃𝑖 of length r, and 𝑒𝑖𝑗 are the 

normally distributed residuals for the jth measurement period of the ith plate. 
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Figure 2.6: Nine example empirical plots that describe how the three model parameters 

can change the size and shape of the growth curve. D50 has a different value in each of 

the three columns of plots, while MaxPop has a different value in each of the three rows 

of plots. Each growth curve line in the individual plots represents a different Lag value. 

The ability of the model to assign a different parameter estimate per site level is through the 

incorporation of the random effects in 𝜃𝑖, as seen in Eq. (4), 

𝜃𝑖 =  A𝑖𝛽 +  B𝑖b𝑖 ,     b𝑖 ~ N(0,  𝜎2D),   (4) 

Where 𝛽 is a p-vector of fixed population parameters, b𝑖 is a q-vector of random effects 

associated with individual i, the matrices A𝑖 and B𝑖 are design matrices of size r x p and r x q 

for the fixed and random effects, respectively, and 𝜎2D is a covariance matrix. 

A detailed description of how the fixed and random effects matrices can be specified to suit 

any NLME model can be found in (Lindstrom and Bates, 1990). Instead of getting caught up 

in the complex formula derivations, I will explain how the actual NLME model used was 

derived. The predicted values of C. intestinalis were calculated using the basic formula 

described in Eq. (5), 

𝐶. 𝑖𝑛𝑡𝑒𝑠𝑡𝑖𝑛𝑎𝑙𝑖𝑠 % =  
MaxPop  ×  DaDLag

Days50Lag  +  DaDLag   (5) 

where the estimated (based on the abiotic vector 𝑥𝑖𝑗) values of MaxPop, Days50, and Lag 

make up the parameter vector 𝜃𝑖  from Eq. (3) and DaD is the known time value. Eq. (6) is 

assigning a general term, X, to the expanded version of the right hand side of Eq. (5):  
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    X =  
exp(MaxPop)   ×  DaDLag

exp (Days50)Lag   +   DaDLag    (6) 

Eq. (7) is simply denoting C. intestinalis as the term Y: 

Y =  𝐶. 𝑖𝑛𝑡𝑒𝑠𝑡𝑖𝑛𝑎𝑙𝑖𝑠 %    (7) 

Eq. (8) is the full equation used in the NLME package in R to fit the model based on the input 

data of observed C. intestinalis and abiotic variables: 

Y = nlme(100 ×  ((inv. logit(X) –  0.5)  ×  2)  (8) 

Inv.logit(X) is limited to output values between 0.5 and 1, hence why it is readjusted in the 

equation to output a value between 0 and 1, so that the total potential range of fitted values is 

between 0 and 100 after it has been multiplied. 

2.7.5.2. Bottom-up model selection 

Only the core sites – minus absent were used in the development of the NLME models. 

Ideally, a limited set of a priori models would be devised, only including models that have 

pure theoretic reasoning behind every inclusion of a given predictor variable in a model 

parameter. The model fitting I carried out was not exactly according to this a priori approach, 

but instead was a combination of theory and exploration, while also being dependent upon 

some limitations in achieving model convergence. The abiotic predictor variables were 

chosen a priori, but the specific metrics used to represent each one, as well as which model 

parameter each metric would be used in was not entirely a priori. The bottom-up approach 

began with the development of a ‘null model’, which was composed of the model parameters 

not including any abiotic metrics. Once convergence of the ‘null model’ was achieved, the 

inclusion of site-level effects was then tested. I started with the MaxPop parameter alone as a 

site-level effect, then proceeding to test D50 alone and Lag alone. Providing model 

convergence was achievable, I then included multiple combinations of two or three of the 

model parameters as site-level effects until the best model fit was found, according to AICc 

values. Once the null model with optimal site-level effects was found, the first abiotic metric 

was introduced into the parameters. The metrics that would be used in the development of 

any given candidate set were chosen during the preselection process described in section 

2.7.3. The decision of what metric to introduce first was based on the literature and prior 

knowledge of the system, through visually assessing trends in the biotic and abiotic plots, and 

through some exploratory analyses (correlation). For an example, in 2015 temperature was 
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always introduced first, as it appeared to be the most important variable both through visual 

assessment and existing knowledge. However, in 2014 salinity appeared to have a stronger 

association with C. intestinalis from visual inspection of these data, so it was introduced first. 

This somewhat exploratory procedure was carried out, all the while conducting model fit 

comparisons and diagnostic checks (residual plots and observed vs. fitted plots) of each 

model. This continued until one model was continually coming out as the most likely. 

It is worth noting now that the absolute value of AICc is not of importance in and of itself, 

but the relative values (and differences in particular) of the AICc compared to other models is 

the useful aspect. Also, AICc can only be used to compare nested models, all of which were 

fit using the same number of observations in the same dataset. If AICc values were very 

similar, the more parsimonious model was chosen to continue model development with. Once 

it was deemed unlikely that a more likely model could be fit to these data, then the entire set 

of models developed (candidate set) was compared. The first inter-model assessment criterion 

is the AICc difference, Δi, where, 

∆𝑖=  AICc𝑖  −  AICc𝑚𝑖𝑛 ,    (10) 

the Δi being the difference between a given model’s AICc (AICci) and the best model’s AICc 

(AICcmin). How to interpret Δi  values are described by (Burnham and Anderson, 2003) as: 

when Δi ~ 0-2, there is substantial empirical evidence that supports the model and it can be 

considered as likely as the best model; Δi of 4-7 means models have considerably less 

empirical support than the best model; and Δi > 10 means that the model has essentially no 

empirical support. While there are some gaps in this system (what does a Δi of 3-4 mean?), it 

is a good guiding set of principles and the grey areas can be somewhat context dependent. 

The next model comparison method used a weighting system of all of the models within the 

candidate set. This system assigns each model within a candidate set with an Akaike weight 

(wi) described as, 

𝑤𝑖  =  
exp (−1

2
∆𝑖)

∑ exp (−1
2

∆𝑟
𝑅
𝑟=1 )

,     (11) 

where wi depends on the entire candidate set and all add up to 1. The wi is considered as the 

weight of evidence in favour of model i being the actual best model for the situation at hand 

given that one of the R models must be the best of the candidate set (Burnham and Anderson, 

2003). A model that is clearly the best of a given candidate set of models would have a wi of 
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> 0.9 (Anderson et al., 2001). If the best model does not have a large wi and the top models 

are all quite likely, this means that model selection uncertainty is likely to be high (Burnham 

and Anderson, 2003). The final method of comparison is called the evidence ratio, whereby 

the likelihood of one model is compared to another invariant of all other models in the 

candidate set. The evidence ratio is simply calculated as the ratio between the Akaike weights 

of the two models, wi /wj. The model comparisons for either the top ten models or all the 

models with a Δi < 10 are presented for each candidate set are presented in the results section. 

2.7.5.3. Top-down model selection 

The top-down model selection process can be likened to the ‘global model’ in Burnham and 

Anderson (2003), where the most parameterized model with all variables thought to be 

important are included. I did however use the preselection process (Section 2.7.2.) before 

establishing the abiotic variable metrics to be used in the top-down (TD) model building 

approach. Once the four metrics were determined via preselection, they are all introduced 

into the model. This led to four metrics in each model parameter (technically, 12 abiotic 

parameters and 3 model parameters, a total of 15 parameters, but for the purposes of clarity 

there is a distinction drawn in my thesis between the model parameters [e.g. MaxPop] and the 

abiotic parameters that are coefficients within the greater model parameters). Assuming 

convergence was achieved, this top-down model is now referred to as the global model (GM), 

and all others developed are nested (or reduced) versions of the GM. Running every possible 

abiotic metric combination in all three parameters was not feasible (~14,000 possible 

combinations) or good practice (risk of data-dredging). To counter these risks, a handful of 

model designs were decided beforehand. Each metric was systematically removed from the 

GM, one parameter at a time. For example, when considering the salinity metric included in 

the GM, the next model run would be the GM excluding the salinity metric from MaxPop. 

This would be repeated for each of the other model parameters. Once the three models had 

been run excluding only the single salinity metric from each parameter at a time, this would 

be repeated removing the salinity metric from two of the parameters at a time. This was 

repeated until all three combinations were completed. Finally, the GM was run without the 

salinity metric in any of the model parameters. This whole process was repeated for each 

abiotic variable metric. There was a predefined number of model variations to run in the TD 

approach, so all TD candidate sets have twenty nine models (one GM and then seven 

variations of metric removal for each abiotic variable metric), as long as convergence could 
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be achieved for all model variants (it could). The same methods described above in the 

bottom-up section, 2.7.4.2., were used to compare models within a candidate set. 

2.7.5.4. Best temperature-only and salinity-only models 

In the interest of model parsimony and to counter the large portions of missing data in 2014, I 

developed models using either temperature only or salinity only data. These model fitting 

procedures were performed post hoc after the initial bottom-up and top-down model 

development. The temperature or salinity metric chosen for development was kept consistent 

with the metric chosen from the preselection process for the given year. Models were 

developed and assessed in the same manner as described in section 2.7.5.2. Best salinity-only 

model (BSO) for 2015 are only presented in the model accuracy assessment, nested cross-

validation, and inter annual predictions (section 3.7. onwards). 

2.7.5.5. Parameter estimates and effect sizes 

Coefficient estimates for the predictor variable parameters, as well as the standard deviations 

of the site-level effects from the species-wide intercept are presented for the ‘best’ model 

within each year are presented. Effect sizes are not easily obtained (and can be nonsensical) 

from multivariate models due to multicollinearity between model parameters, as well 

inconsistent scaling and a lack of a common denominator between model parameters (Cade, 

2015). The results from the NLME modelling I carried out are best interpreted holistically, 

assessing the collective output of any given model as opposed to assessing the individual 

parameters’ regression coefficients (Klein, Pers. Com.). As a purely qualitative guide to assist 

in the interpretation of parameter estimates, I calculate the absolute scaled effect size (ASES) 

for each of the abiotic covariate model parameters, which can be used to compare abiotic 

covariates within a given model parameter, but not between model parameters. The scaling is 

simply to present the estimated coefficient in a comparable scale to the other abiotic metrics. 

The estimate for a given abiotic covariate from the best model was multiplied by the 

observed range for that same abiotic variable within these data, these producing a scaled 

estimate. The ASES metric is absolute, as it does not describe the direction or rate of change 

in the response, but rather the absolute range over which a given abiotic covariate can 

influence the response.  

2.7.5.6. Observed vs. fitted plot 
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The observed C. intestinalis data were plotted alongside the best models’ full-fit (species-

wide effects fit and site-level effects fit combined) values from each of the models to 

visualize the fitted growth for each site. The species-wide effects fit was also plot in isolation, 

in a similar fashion to Meng et al. (2008) and Calegario et al. (2005), alongside the full-fit in 

order to display the fit accounted for by the abiotic variables alone, without site-level effects. 

2.7.5.7. Residual plots 

Residual plots are only presented for the best model (based on AICc) within each year in the 

results. The residual plots for all other models can be found in Appendix F. The residual 

variance was plotted using boxplots and separated at the site-level. This was conducted for 

the full-model (species-wide effects and site-level effects), as well as for the species-wide 

effects in isolation (Buqui et al., 2015; Calegario et al., 2005). An area of concern when using 

random effects in a model is the bias that can be incorporated into the estimate if the random 

effects are correlated with the covariates/predictor variables. If such correlations are present, 

they violate  model assumptions, introducing bias into predictions throughout the measured 

range of the covariates, as well as compromising parameter estimates (Bafumi and Gelman, 

2007). This issue is easily assessed by visually inspecting the relationship by plotting the 

random effects with the predictor variables to inspect the homogeneity of the relationship. 

Solutions, if needed, are readily available to counter correlation between predictors and 

random effects (Bafumi and Gelman, 2007; Bell and Jones, 2015). 

2.7.5.8. Confidence intervals and prediction intervals 

The 95 % confidence intervals of the population median and the 95 % prediction intervals 

were calculated for the best model in both years using a bootstrapping technique using the 

plyr R package (Wickham, 2011). The confidence intervals provide a measure of how well 

the population median was determined by the models, with 95 % confidence. The confidence 

interval median was used, rather than the mean, as the median is less sensitive to outliers and 

is suitable for the initial growth period when zero growth is common. The prediction intervals 

determine a range in which fitted values are expected to be found 95 % of the time. A 

bootstrapping technique can provide better coverage properties for the likely range of the true 

parameter value than confidence intervals calculated on the observed data alone, particularly 

for small sample sizes or non-normal distributions (Beninger et al., 2012). 

2.7.5.9. Model accuracy  
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Model accuracy was assessed by comparing the model output (fitted values) with the 

corresponding observed values, using a range of methods to assess the error rate of the fitted 

values and the variance in the observed data explained by the model. It is all too common for 

the measure of significance and explanatory power of a model to be provided by the 

coefficient of determination (R
2
) and a p-value, especially in marine ecology (Boldina and 

Beninger, 2016). Neither of these provides a measure of whether the model is appropriately 

specified, or whether assumptions have been met. In nonlinear modeling an R
2 

value is even 

less meaningful, as the value is not constrained between 0 and 1, with random effects 

contributing explanatory power at multiple levels of a given effect. To carry out appropriate 

model accuracy assessment, I used four methods recommended from a comprehensive 

comparison of techniques using an ecosystem model example (Olsen et al., 2016). Olsen et 

al. (2016) recommend using Spearman’s rho as the correlation method for model assessment. 

A correlation coefficient provides a measure of the tendency of the fitted values and the 

observed values to vary together. This provides a measure of the similarity in which the two 

vary, but it does not provide a measure of accuracy (Stow et al., 2003). Two measures of 

model error are recommended by Olsen et al. (2016). Mean absolute error (MAE) is a 

particularly useful method, as it provides a measure of error in the same units as the 

dependent variable for a given model (optimal value = 0). The root mean square error 

(RMSE) is another well-known measure used to assess the level of error in the fitted values 

of a model (Meng et al., 2008). While it is similar to the MAE, RMSE is a method that is 

more sensitive to outliers, especially rare, extreme outliers, as the squaring procedure 

accentuates these (optimal value = 0). In this case, both MAE and RMSE are presented in 

units of percent C. intestinalis. This provides an intuitive measure of the accuracy of the 

model for any observer. MAE and RMSE are favourable compared to a measure of error such 

as the average error. The MAE and RMSE measure the magnitude of error, not the direction, 

so positive and negative fitted values don’t cancel each other out, as would be the case for the 

average error (Stow et al., 2003). MAE and RMSE were calculated using the hydroGOF R 

package (Zambrano-Bigiarini, 2014). Modelling efficiency (MEF) is commonly used to 

assess the predictive capability of a model by measuring the proportion of variability that is 

explained (ranges from -1 to 1, optimal value = 1) (Amaro et al., 1998; Lehuta et al., 2013; 

Shimoda and Arhonditsis, 2016). It is similar to an R
2
 measure, but more appropriate and 

commonly used for NLME models (Amaro et al., 1998). MEF was calculated using the 

JBTools R package (Buttlar, 2015). 
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2.7.5.10. Nested cross-validation and model prediction 

A nested cross-validation technique was used to assess the predictive power of a given model 

within the observed dataset. The procedure involves separating the observed data into n folds, 

training the model on n-1 folds (training dataset) and then using this trained model to predict 

the observed values in the single fold excluded (test fold) from the training dataset. This 

process is repeated by successively excluding all n folds and the results of all test folds were 

averaged for each model. The variance explained in the fitted values of the test fold was then 

assessed using MAE, RMSE, MEF, and the Spearman rank correlation coefficient, as in 

model validation. The nested cross-validation was carried out on the annual datasets in 

isolation. An additional step to test the predictive power was assessed by using models 

developed in a single year to predict the observed values in the second year based on the 

observed abiotic data. The error and predictive power was again measured using MAE, 

RMSE, MEF, and Spearman’s ρ. 
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3. Results 

3.1. Cumulative C. intestinalis abundance 

 

Figure 3.1: C. intestinalis growth curves for all 13 sites throughout the 2014 monitoring 

period. The individual plate abundance is displayed (black circles), with a growth curve 

(black line) plotted through the mean of each measurement period. 
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3.1.1. Cumulative C. intestinalis growth in 2014 

No C. intestinalis was recorded on any settlement plate during the first measurement period 

in 2014 (Fig. 3.1). Anecdotal observations suggest settlement occurred at sites that would go 

on to exhibit high abundance in later measurement periods (pers. obs.), but these individuals 

were too small to be positively identified and measured. The sites with the highest mean 

abundance of C. intestinalis in 2014 were CC, IP, and FP respectively (Fig. 3.1). The C. 

intestinalis abundance had reached saturation at these three sites by the third measurement 

period, equating roughly to the first week in August. The growth of C. intestinalis at PG lags 

behind these three sites by about a month, as it is measurable in the third measurement period 

with growth increasing until plateauing in the fifth measurement period before saturation is 

reached. PB and ZZ (deployed c. two months later than all other sites) exhibit a further lag in 

growth in comparison with PG, as no C. intestinalis was measured in the third measurement 

period, except for the odd individual at PB. Increased abundance was recorded in the fourth 

measurement period and growth continued until the final measurement period at both sites. 

SH followed a similar pattern to that of PB and ZZ in terms of when the first recruits were 

present, but the abundance was never as high. This resulted in a relatively stable abundance 

once C. intestinalis was present. C. intestinalis was present at WP, VC, and DW in very low 

abundance. Despite one recruit on a plate at WP in the second measurement period, this did 

not result in high number of individuals or a high abundance later on in the monitoring. The 

first C. intestinalis presence was measured at both VC and DW during the third measurement 

period, but again, very little growth occurred in the following measurement periods. No C. 

intestinalis presence was recorded on the settlement plates at any of YB, SA or LR. It should 

be noted though that three individuals were discovered on the floating dock infrastructure at 

YB. So despite no recording of C. intestinalis on the settlement plates, its presence 

(potentially at very low abundance) in the water of YB harbour can be confirmed. The same 

cannot be said of SA and LR where there is no evidence to suggest C. intestinalis is present 

in the waters at these two sites.  

3.1.2. Cumulative C. intestinalis growth in 2015 

No C. intestinalis presence was recorded on settlement plates at any site during the first 

measurement period (Fig. 3.2). CC and IN exhibited similar C. intestinalis abundance in the 

second measurement period. CC reached saturation point in measurement period three, while 

IN displayed a high level of variance, abundance increasing in measurement period three 
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before decreasing in measurement period four and then stabilizing until the final 

measurement (Fig. 3.2).  

 

Figure 3.2: C. intestinalis growth curves for all 15 sites throughout the 2015 monitoring 

period. The individual plate abundance is displayed (black circles), with a growth curve 

(black line) plotted through the mean of each measurement period. 
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C. intestinalis abundance began to grow at FP, PG, IP, SH, DW, WP, and PB in the third 

measurement period (barring the odd individual at FP and IP in the second measurement 

period). FP reached saturation point in the fourth measurement period, while PG and IP 

followed similar patterns of growth without ever reaching saturation point. SH, DW, WP, and 

PB had lower abundance in the third measurement period compared to FP, PG, and IP.  SH 

and DW displayed rapid growth in measurement period four, with saturation occurring in 

measurement period five at DW, while near saturation occurred at SH. WP and PB exhibited 

a slower rate of growth than the sites mentioned above, while also displaying a high degree of 

variability between settlement plates. Neither site reached saturation point. C. intestinalis 

presence was measured at LB, VC, and ZZ in the fourth measurement period (except for the 

odd individual at ZZ in the third measurement period), with all site exhibiting slow and 

variable growth until the final measurement period. C. intestinalis was measured at YB in the 

fourth measurement period at very low abundance and remained very low in the final 

measurement period. No C. intestinalis presence was recorded on the settlement plates at any 

SA or LR. 

3.1.3. Comparison between cumulative abundance in 2014 and in 2015 

CC had the highest mean C. intestinalis abundance in both years. Qualitatively it had the 

highest biomass of any site on settlement plates and on surrounding harbour infrastructure for 

both years (pers. obv.). FP and IP had markedly lower C. intestinalis abundance during the 

second measurement period in 2015 compared to 2014. Notably, saturation was never 

reached at IP in 2015, while it took a measurement period longer for FP to reach saturation in 

2015. The growth at PG was similar in both years in terms of onset and rate of growth, with a 

marginally higher abundance in 2015. Two low abundance (WP and DW) sites and one 

moderate abundance (SH) site in 2014 had markedly higher abundance in 2015. SH 

settlement plates were practically saturated by the fourth measurement period, which is a 

stark contrast to 2014. C. intestinalis presence at DW was first recorded in the third 

measurement period, from which there is a steep increase in abundance to near saturation 

cover in the fourth measurement period (saturation point in the 5
th

). Growth at WP was less 

pronounced than SH and DW, having an earlier onset and more gradual increase with higher 

plate variability too. Two moderate to high (PB and ZZ) abundance sites in 2014 had lower 

abundance in 2015, with greater variability between settlement plates. VC had higher 

abundance in 2015, but the difference was not as great as that seen at SH, DW and WP. YB 

had no C. intestinalis present on settlement plates in 2014 but had a low abundance in 2015.  
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3.2. Monthly C. intestinalis abundance 

3.2.1. Monthly C. intestinalis growth in 2014 

Providing the presence of C. intestinalis at a site, in 2014 the abundance was always highest 

in the fourth measurement period (sometimes the only period with any growth), which 

equates roughly to the month of August (Fig 3.3). Very few sites displayed any measurable 

growth in the other measurement periods. LR, SA, and YB had no growth during any of the 

measurement periods. WP and DW had such low monthly abundance that it appears 

negligible. PG and SH had low abundance in measurement period four. In measurement 

period four, VC, PB, and ZZ had roughly double the abundance that PG and SH had. CC, FP, 

and IP (overall mean abundance decreasing respectively) had high C. intestinalis abundance 

in the fourth measurement period and growth occurred in all but the first measurement 

period. 

3.2.2. Monthly C. intestinalis growth in 2015 

There is a range of different C. intestinalis monthly abundance patterns displayed throughout 

the thirteen sites in 2015 (Fig. 3.4). Providing the presence of C. intestinalis at a site, in 2015 

the abundance was always highest in the fourth or fifth measurement, which equates roughly 

to the months of August and September respectively. LR, SA, and YB had no C. intestinalis 

growth on any of the monthly settlement plates, while ZZ had very low growth during the 

fourth and fifth measurement periods. LB, PG, IP, and VC all had low growth in the fourth 

measurement period, with even lower growth in either the third or fifth period. PB and WP 

had moderate C. intestinalis abundance measurement period five (their highest abundance 

period), with low abundances in the third and fourth measurement periods. IN had C. 

intestinalis present in low abundance in measurement period two, with each period 

progressively increasing to a moderate abundance in the fourth period, before dropping to 

near zero in the final period. FP, DW, and CC all had high abundance in the fourth 

measurement period, with CC the only one of the three to also exhibit quite high abundances 

in the third and fifth periods as well. SH had very similar abundance levels to CC in both the 

third and fourth periods, while the fifth period had the highest. 
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Figure 3.3: The monthly C. intestinalis abundance for each measurement period in 2014, 

recorded independently of all other measurement periods on new settlement plates 

deployed at each site every visit. Sites ordered with the highest overall-mean C. 

intestinalis abundance at the bottom. 
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Figure 3.4: The monthly C. intestinalis abundance for each measurement period in 2015, 

recorded independently of all other measurement periods on new settlement plates 

deployed at each site every visit. Sites ordered with the highest overall-mean C. 

intestinalis abundance at the bottom. 
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3.2.3. Comparison between monthly abundance in 2014 and in 2015 

Considerably different growth patterns were recorded between the two years for a number of 

sites (Fig. 3.3 and Fig. 3.4). The most noticeable pattern change was that in 2015, peak 

abundance for each site was not always in the fourth measurement period. The greatest shift 

in growth saw SH go from a low abundance in 2014 to the highest overall abundance in 2015. 

Another dramatic increase in abundance between the years was displayed at DW, where the 

abundance in the fourth and fifth measurement periods in 2015 was a lot higher. PB and WP 

also had higher abundance in 2015, but not the same degree of increase as seen at SH and 

DW. The biggest shift in abundance in the opposite direction was seen at IP, where the 

abundance in the fourth measurement period went from high in 2014 to low in 2015. ZZ 2015 

abundance also saw a decrease compared to 2014, but it was a relatively small change 

compared to IP. Abundances at PG, VC, FP, and CC were relatively similar between the 

years, apart from a few differences between measurement periods. LR, SA, and YB had no C. 

intestinalis growth on any of the monthly settlement plates in either year.  

3.3. Abiotic variables 

3.3.1. Temperature 

In cases where temperature was recorded in both years, the minimum daily mean over the 

monitoring period was always lower in 2015, while the maximum daily mean over the same 

period was always higher in 2015 (Table 3.1). In some cases these differences were slight, 

like at PG (~ 1°C in both cases), while the differences were noticeable in others, IP for 

example (~ 4°C in both cases). On average, 2015 was a colder year, with the exceptions of IP 

and PB (Table 3.1). In 2014, the delay in monitoring commencement at VC and ZZ lead to 

the absence of data for the coldest portion of the monitoring period. This resulted in them 

having a higher overall mean temperature than what is truly representative to compare to the 

other sites. This can be seen in Fig. 3.5 where they appear quite high in the rank of hottest to 

coldest sites. A more representative rank for these sites is displayed in Fig. 3.6. When 

monitored during the same period of time, of the core sites, only YB is colder on average in 

2015 than the pair.  

A clear trend is visible in 2015, where the sites with a higher mean temperature also have 

higher C. intestinalis abundance (Fig. 3.6). This was not as clear in 2014, although the 

artificial elevation of ZZ and VC may have confounded this slightly (Fig. 3.5). The main 
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differences between the years that resulted in a clear temperature trend in 2015 is the marked 

increase in C. intestinalis abundance at WP, DW, and SH. In addition, SA and LR were ~ 

1°C colder on average in 2015, while PB was slightly warmer and FP was only ~ 0.5°C 

colder on average in 2015 (Table 3.1), which shifted the order based on the mean (Fig. 3.6). 

Table 3.1: Summary temperature values for all 15 sites (in alphabetical order) and both 

years (where applicable). The 2014 values, where available are shaded in light grey, 

while IN and LB are shaded in dark grey. Mean = Overall mean of daily mean values. 

Minimum = Minimum daily mean value. Maximum = Maximum daily mean value. 

Variance = Variance of daily mean values. 

Site Year Minimum Mean Maximum 

CC 2014 9.85 15.99 19.09 

CC 2015 8.03 15.62 20.22 

DW 2014 5.02 15.53 22.42 

DW 2015 2.24 14.74 23.67 

FP 2014 7.74 14.07 17.79 

FP 2015 7.04 13.65 19.28 

IN 2015 5.74 14.46 23.84 

IP 2014 8.05 15.82 20.74 

IP 2015 3.91 16.13 24.14 

LB 2015 1.43 12.47 21.21 

LR 2014 3.28 14.48 21.91 

LR 2015 2.34 13.53 22.65 

PB 2014 4.94 13.81 21.24 

PB 2015 2.94 13.94 21.92 

PG 2014 5.01 14.47 21.29 

PG 2015 4.14 14.19 22.31 

SA 2014 5.28 14.67 20.94 

SA 2015 1.48 13.46 21.33 

SH 2014 5.62 15.14 20.52 

SH 2015 3.40 15.07 25.11 

VC 2014 4.07 15.10 21.57 

VC 2015 1.69 13.29 23.58 

WP 2014 9.86 16.29 19.05 

WP 2015 7.82 16.04 22.16 

YB 2014 7.48 13.05 16.02 

YB 2015 5.77 12.45 17.92 

ZZ 2014 7.05 15.61 20.36 

ZZ 2015 3.50 13.13 20.73 
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Figure 3.5: Left - The temperature profiles of the core sites monitored in 2014 are 

presented by a heatmap of the daily mean values. The sites are ordered by the overall 

mean of daily means, with the highest overall mean at the top. * The white sections at 

the start of ZZ and VC plots are missing data points. Right – The mean C. intestinalis 

abundance for each measurement period in 2014 represented as a heatmap, with sites 

corresponding to the appropriate site from the temperature plot on the left. * The white 

section at the start of ZZ is a missing datum point. 
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Figure 3.6: Left - The temperature profiles of the expanded sites monitored in 2015 are 

presented by a heatmap of the daily mean temperature values. The sites are ordered by 

their overall mean temperature, with the highest overall mean at the top. Right – The 

mean C. intestinalis abundance for each measurement period in 2015 represented as a 

heatmap, with sites corresponding to the appropriate site from the temperature plot on 

the left. 
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3.3.2. Salinity 

The overall mean salinity and maximum daily-mean salinity across all sites was higher in 

2014, while the minimum daily-mean salinity was higher at all sites in 2014, with the 

exception of YB (Table 3.2). This trend could be a result of a number of contributing factors: 

naturally occurring inter-annual variation could, as a result of differences in freshwater input, 

temperature, and oceanic currents; the large quantities of missing data leading to a loss of 

vital information; or differences in equipment. If the first is true, then this is a real effect in 

the variation in salinity. If either the second or third are true, it at least appears as if it would 

be a systematic error, which could result in the relative trend in 2014 still being valuable 

information, but it complicates comparisons between the two years. There is also a chance 

that the missing data or equipment differences would lead to error that is not systematic, but 

instead varies within 2014. I think this is less likely, but still important to consider.  

Comparing the ranked sites according to overall mean salinity, there appears to be a pattern in 

2014, where the sites with higher overall mean salinity also had higher mean C. intestinalis 

abundances (Fig. 3.7). The three highest abundance sites are all in the top four sites ranked by 

overall mean salinity. This same pattern is not evident in 2015, where high abundance sites 

are scattered throughout the ranking by overall mean salinity (Fig. 3.8). While there are some 

inter-annual differences between the site rankings according to overall mean salinity, they do 

not appear to be dramatic. Three of the four lowest mean salinity sites in 2014 were again the 

three lowest (with the exception of the new site LB) in 2015 (Fig. 3.7 & Fig. 3.8). WP is the 

exception, as it moved up the site rankings according to overall mean salinity. Again, three of 

the top four mean salinity sites in 2014 were the same in 2015, the exception being IP.  
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Table 3.2: Summary salinity values for all 15 sites (in alphabetical order) and both 

years (where applicable). The 2014 values, where available are shaded in light grey, 

while IN and LB are shaded in dark grey. Mean = Overall mean of daily mean values. 

Minimum = Minimum daily mean value. Maximum = Maximum daily mean value. 

Variance = Variance of daily mean values. 

Site Year Minimum Mean Maximum 

CC 2014 30.48 31.93 33.36 

CC 2015 28.91 30.71 32.24 

DW 2014 24.90 29.32 30.46 

DW 2015 20.98 28.67 30.37 

FP 2014 30.20 32.50 33.65 

FP 2015 29.62 31.11 32.31 

IN 2015 23.00 30.02 32.17 

IP 2014 29.71 32.23 33.94 

IP 2015 22.71 29.36 31.04 

LB 2015 16.84 28.39 30.84 

LR 2014 26.31 30.38 32.01 

LR 2015 23.70 29.07 30.97 

PB 2014 30.70 31.90 33.06 

PB 2015 25.50 29.85 31.36 

PG 2014 30.68 31.55 32.30 

PG 2015 25.82 29.60 31.33 

SA 2014 25.54 28.48 30.07 

SA 2015 10.96 26.70 29.64 

SH 2014 15.92 29.00 33.53 

SH 2015 3.83 25.29 30.83 

VC 2014 30.12 31.50 32.42 

VC 2015 24.36 29.50 31.26 

WP 2014 30.24 31.64 33.01 

WP 2015 23.07 29.04 31.45 

YB 2014 17.94 32.15 33.79 

YB 2015 26.02 31.33 32.73 

ZZ 2014 27.79 30.40 31.17 

ZZ 2015 21.65 29.90 30.90 
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Figure 3.7: Left - The salinity profiles of the core sites monitored in 2014 are presented 

by a heatmap of the daily mean values. The sites are ordered by their overall mean 

salinity, with the highest overall mean at the top. * The white sections present for all site 

profiles are missing data points. Right – The mean C. intestinalis abundance for each 

measurement period in 2014 represented as a heatmap, with sites corresponding to the 

appropriate site from the salinity plot on the left. * The white section at the start of ZZ 

is a missing datum point. 
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Figure 3.8: Left - The salinity profiles of the expanded sites monitored in 2015 are 

presented by a heatmap of the daily mean salinity values. The sites are ordered by their 

overall mean salinity, with the highest overall mean at the top. * The white sections 

present in the LB and IN profiles are missing data points. Right – The mean C. 

intestinalis abundance for each measurement period in 2015 represented as a heatmap, 

with sites corresponding to the appropriate site from the salinity plot on the left. 
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3.3.3. pH 

The overall mean pH was lower in 2015 across all sites (Table 3.3). The maximum and 

minimum daily mean values do not follow as consistent a pattern. The minimum was higher 

in 2015 at CC, DW, and YB, by relatively small margins (Table 3.3). The maximum was 

higher in 2015 at DW, FP, LR, PB, and SA, mostly by relatively slight differences again. No 

notable patterns are evident in either year between the overall mean pH and the C. intestinalis 

mean abundance (Fig. 3.9 & Fig. 3.10). 

Table 3.3: Summary pH values for all 15 sites (in alphabetical order) and both years 

(where applicable). The 2014 values, where available are shaded in light grey, while IN 

and LB are shaded in dark grey. Mean = Overall mean of daily mean values. Minimum 

= Minimum daily mean value. Maximum = Maximum daily mean value. Variance = 

Variance of daily mean values. 

Site Year Minimum Mean Maximum 

CC 2014 7.84 8.04 8.14 

CC 2015 7.88 7.99 8.11 

DW 2014 7.73 8.05 8.22 

DW 2015 7.81 8.02 8.25 

FP 2014 7.99 8.07 8.11 

FP 2015 7.90 8.03 8.18 

IN 2015 7.51 7.91 8.18 

IP 2014 8.01 8.08 8.20 

IP 2015 7.95 8.04 8.15 

LB 2015 7.44 8.03 8.55 

LR 2014 7.52 7.85 8.13 

LR 2015 7.21 7.75 8.39 

PB 2014 7.96 8.12 8.33 

PB 2015 7.70 8.06 8.38 

PG 2014 8.16 8.23 8.29 

PG 2015 7.69 8.04 8.28 

SA 2014 8.01 8.12 8.26 

SA 2015 7.79 8.05 8.28 

SH 2014 7.92 8.09 8.30 

SH 2015 7.24 8.02 8.28 

VC 2014 7.82 8.09 8.18 

VC 2015 7.67 8.04 8.17 

WP 2014 7.99 8.07 8.13 

WP 2015 7.57 7.94 8.10 

YB 2014 7.79 8.03 8.17 

YB 2015 7.86 8.00 8.16 

ZZ 2014 NA NA NA 

ZZ 2015 6.97 7.99 8.30 
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Figure 3.9: Left - The pH profiles of the core sites monitored in 2014 are presented by a 

heatmap of the daily mean pH values. The sites are ordered by their overall mean pH, 

with the highest overall mean at the top. * The white sections present for multiple site 

profiles are missing data points. Right – The mean C. intestinalis abundance for each 

measurement period in 2014 represented as a heatmap, with sites corresponding to the 

appropriate site from the pH plot on the left. * The white section at the start of ZZ is a 

missing datum point. 
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Figure 3.10: Left - The pH profiles of the expanded sites monitored in 2015 are 

presented by a heatmap of the daily mean pH values. The sites are ordered by their 

overall mean pH, with the highest at the top. * The white sections present in the LB and 

IN profiles are missing data points. Right – The mean C. intestinalis abundance for each 

measurement period in 2015 shown in a heatmap, with sites corresponding to the 

appropriate site from the pH plot on the left. 
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3.3.4. Water motion 

The overall mean values of the daily variance in acceleration were lower in 2015, the 

exceptions to which are PB and YB (Table 3.4). SA and SH, stand out as having higher water 

flow values, regardless of year. To a lesser extent, the same can be said for IP. All three of 

these sites are mussel leases, and are in sheltered bays, rather than man-made harbours and 

marinas. More sites with high C. intestinalis abundance are ranked near the top of the higher 

acceleration values in 2014, while no discernible trend is visible in 2015 (Fig. 3.11 & 3.12). 

Table 3.4: Summary water motion values for all 15 sites (in alphabetical order) and 

both years (where applicable). The 2014 values, where available are shaded in light 

grey, while IN and LB are shaded in dark grey. Mean = Overall mean of daily variance. 

Minimum = Minimum daily variance. Maximum = Maximum daily variance. Variance 

= Variance of daily variance. 

Site Year Minimum Mean Maximum 

CC 2014 3.14 x 10 
-4

 6.1 x 10 
-4

 1.48 x 10 
-3

 

CC 2015 1.03 x 10 
-4

 3.06 x 10 
-4

 7.73 x 10 
-4

 

DW 2014 1.2 x 10 
-4

 4.03 x 10 
-4

 6.1 x 10 
-4

 

DW 2015 7.27 x 10 
-5

 3.35 x 10 
-4

 6.12 x 10 
-4

 

FP 2014 1.94 x 10 
-5

 4.61 x 10 
-4

 3.14 x 10 
-4

 

FP 2015 8.8 x 10 
-5

 1.62 x 10 
-4

 2.95 x 10 
-4

 

IN 2015 1.31 x 10 
-4

 4.57 x 10 
-4

 1.77 x 10 
-3

 

IP 2014 3.33 x 10 
-4

 9.1 x 10 
-4

 4.77 x 10 
-4

 

IP 2015 1.98 x 10 
-4

 7.04 x 10 
-4

 2.34 x 10 
-3

 

LB 2015 1.01 x 10 
-4

 3.15 x 10 
-4

 2.23 x 10 
-3

 

LR 2014 1.4 x 10 
-4

 4.62 x 10 
-4

 2.46 x 10 
-3

 

LR 2015 6.35 x 10 
-5

 3.23 x 10 
-4

 9.21 x 10 
-4

 

PB 2014 6.75 x 10 
-5

 2.19 x 10 
-4

 8.21 x 10 
-4

 

PB 2015 1.56 x 10 
-4

 2.38 x 10 
-4

 4.41 x 10 
-4

 

PG 2014 2.02 x 10 
-4

 4.33 x 10 
-4

 8.47 x 10 
-4

 

PG 2015 1.17 x 10 
-4

 3.98 x 10 
-4

 1.02 x 10 
-3

 

SA 2014 4.18 x 10 
-4

 1.53 x 10 
-3

 5.78 x 10 
-3

 

SA 2015 3.46 x 10 
-4

 1.29 x 10 
-3

 3.55 x 10 
-3

 

SH 2014 8.92 x 10 
-5

 1.7 x 10 
-3

 1.02 x 10 
-2

 

SH 2015 4.16 x 10 
-4

 1.29 x 10 
-3

 7.63 x 10 
-3

 

VC 2014 9.36 x 10
5
 3.03 x 10 

-4
 2.37 x 10 

-3
 

VC 2015 1.07 x 10 
-4

 3 x 10 
-4

 6.81 x 10 
-4

 

WP 2014 2.24 x 10 
-4

 3.35 x 10 
-4

 7.19 x 10 
-4

 

WP 2015 8.89 x 10 
-5

 2.36 x 10 
-4

 5.29 x 10 
-4

 

YB 2014 7.31 x 10 
-5

 2.34 x 10 
-4

 8.95 x 10 
-4

 

YB 2015 4.69 x 10 
-4

 2.86 x 10 
-4

 6.95 x 10 
-4

 

ZZ 2014 9.75 x 10 
-6

 1.46 x 10 
-4

 3.12 x 10 
-3

 

ZZ 2015 1.27 x 10 
-6

 3.75 x 10 
-5

 4.21 x 10 
-4
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Figure 3.11: Left - The water motion profiles of the core sites monitored in 2014 are 

presented by a heatmap of the daily variance in water motion values. The sites are 

ordered by the overall mean variance in water motion, with the highest at the top. * The 

white sections at the start of the profiles for all sites (except PB) are missing data points. 

Right – The mean C. intestinalis abundance for each measurement period in 2014 

represented as a heatmap, with sites corresponding to the appropriate site from the 

water motion plot on the left. * The white section at the start of ZZ is a missing datum 

point. 
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Figure 3.12: Left - The water motion profiles of the expanded sites monitored in 2015 

are presented by a heatmap of the daily variance in water motion values. The sites are 

ordered by the overall mean variance in water motion, with the highest at the top. * The 

white sections at the start of the VC profile are missing data points. Right – The mean 

C. intestinalis abundance for each measurement period in 2015 shown in a heatmap, 

with sites corresponding to the appropriate site from the water motion plot on the left. 
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3.4. Correlation Analysis Results 

Results from exploratory correlation analyses suggest that throughout the two years of 

monitoring, temperature displayed the strongest relationship with C. intestinalis abundance 

(Table 3.5). In 2014, mean C. intestinalis abundance was significantly correlated (p < 0.0001) 

to the minimum and mean temperature metrics, as well as the minimum and mean salinity 

metrics (Table 3.5). In 2015, mean C. intestinalis abundance was significantly correlated (at p 

< 0.0001) to all three of the temperature metrics (Table 3.5). There are a number of additional 

significant correlations between mean C. intestinalis abundance and abiotic metrics, but at a 

lower significance threshold.  

Table 3.5: Results from Kendall’s Rank Correlation Coefficient (τ) tests between site-

specific mean C. intestinalis for each measurement period and the corresponding site-

specific abiotic variable measurement period values. 

Abiotic 

variable metric 

Kendall’s tau: 

2014 

C. intestinalis 

p-value 

Kendall’s tau: 

2015 

C. intestinalis 

p-value 

Min. daily-mean temp. 0.42 < 0.0001 0.56 < 0.0001 

Mean temperature 0.41 < 0.0001 0.55 < 0.0001 

Max. daily-mean temp. 0.32 < 0.001 0.49 < 0.0001 

Min. daily-mean sal. 0.45 < 0.0001 0.28 < 0.01 

Mean salinity 0.43 < 0.0001 0.29 < 0.01 

Max. daily-mean sal. 0.36 < 0.001 0.28 < 0.01 

Min. daily-mean pH -0.05 > 0.05 -0.10 > 0.05 

Mean pH -0.27 < 0.05 -0.17 > 0.05 

Max. daily-mean pH -0.40 < 0.001 -0.22 < 0.05 

Min. daily-var. accel 0.10 > 0.05 -0.17 > 0.05 

Var accel 0.02 > 0.05 -0.19 < 0.05 

Max. daily-var. accel 0.01 > 0.05 -0.15 > 0.05 
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3.5. NLME model: 2014 

3.5.1. Preselection of abiotic variables 

The four metrics remaining after the stepwise removal process was carried out on the 2014 

abiotic data were: mean temperature; mean salinity; minimum pH; and minimum daily-

variance in acceleration (Table 3.6). There were a number of very highly correlated (r > 0.9) 

metrics (Table 3.6). All of the very highly (> 0.9) correlated metrics were within the same 

abiotic variable, e.g. mean and maximum temperature (r = 0.92). 

Table 3.6: Stepwise removal of a single abiotic metric from the most correlated pair 

using the 2014 abiotic metrics. The pair of metrics most correlated at each step is 

highlighted. The light grey shaded metric was kept (Keep), while the metric shaded with 

dark grey was removed (Rem.) from the process. There was a selection rule to always 

have one metric from each variable remaining.  

Variable Metric 
Step 

1 

Step 

2 

Step 

3 

Step 

4 

Step 

5 

Step 

6 

Step 

7 

Step 

8* 

Step 

9 

Temp. 

Mean Keep  Keep    Keep Keep  

Minimum   Rem.       

Maximum Rem.         

Salinity 

Mean     Keep Keep   Keep 

Minimum      Rem.    

Maximum     Rem.     

pH 

Mean  Rem.        

Minimum        Rem.  

Maximum  Keep     Rem.   

Water 

Motion 

Accel. 

Variance    Rem.      

Minimum          

Maximum    Keep     Rem. 

Pearson’s r 0.92 0.91 0.9 0.89 0.83 0.75 -0.74 -0.53 -0.36 

 

As the highly collinear metrics were reduced, some moderate to high (0.7 to 0.89) 

correlations were present between metrics from different abiotic variables, e.g. mean 

temperature and maximum pH (r = − 0.74). If the selection rule requiring the presence of one 

metric from each abiotic in the final four was not implemented, then all metric pairings with 
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values higher than a moderate correlation (> 0.5) would have been removed. In the last 

removal step (Step 8, Table 3.6) neither of the most correlated pair could be removed, as they 

were the last representative for their respective variable. The second most correlated pair was 

used instead (Step 9, Table 3.6). 

3.5.2. Bottom-up and top-down model candidate sets 

The best model in 2014 was the same for the bottom-up (BU) and the top-down (TD) 

methods (Table 3.7 and Table 3.8). The best model (parameter estimates found in Table 3.9) 

contained only the mean salinity metric in each of the three model parameters and had an 

Akaike weight (wi) of 0.48 out of the total (N = 30) set of compared models (candidate set) 

for the BU approach (Table 3.7). The wi for the same model from the TD candidate set (N = 

29) was 0.3 (Table 3.8). In the BU candidate set of models, the second best model had an 

AICc difference (Δi) of ~ 2 compared to the best model (Table 3.7). This means that this 

second-best model has substantial evidence supporting its likelihood of being the best model 

within the candidate set for these data (Burnham and Anderson, 2003). Once the Δi increases 

to the 4 – 7 range, these candidate models are considered to have considerably less support 

and are not as likely to be the best model, based on these data. The remaining eight models 

displayed in Table 3.7 from the BU candidate set are in the 4 – 7 range. In the TD candidate 

set of models there were four models within the 2 Δi range of the best model. In this case, the 

TD candidate set has a higher level of uncertainty related to the selection of a best model. The 

remaining five models presented in Table 3.8 are in the 4 – 7 Δi range. The total wi of any 

candidate set equals 1 and in the BU candidate comparison, the bottom twenty models not 

presented in Table 3.7 only have a cumulative weight of 0.01 between them. The bottom 

nineteen models not presented in the TD candidate set in Table 3.8 have a cumulative weight 

of 0.03 between them. None of these models are worth considering any further. The second-

best model in the BU candidate set has the mean temperature metric included in the Days 50 

parameter, in addition to the salinity metric in all three parameters like the best model. The 

evidence ratio (wi / wj) between this and the best BU model is 3, roughly meaning the best 

model is three time as likely as the second best to be the most likely model given the data. In 

the TD candidate set, the four other models with substantial support are all like the full TD 

model in terms of the temperature, salinity, and acceleration metrics in all three parameters, 

except either one or two of the temperature metrics have been excluded. The evidence ratios 

for these four models in the TD set range between 1.5 and 2.5. 
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Table 3.7: The ten best models (30 models in total) from the bottom-up model development approach (2014), ranked by lowest AICc 

value. *Interaction term included between the variables in this model parameter. The site-level effect for all candidate models was 

specified as MaxPop only. K = no. model parameters. Δi = AICc difference. Model Lik. = model likelihood. wi = Akaike weight. The site-

level effects for all candidate models was specified as MaxPop only. 

Model 

rank 
K AICc Δi 

Model 

Lik. 

Model 

wi 

Cumulative 

wi 

Maximum population 

(MaxPop) 

Days 50 

(D50) 

Lag phase 

(Lag) 

1 8 2524.76 0.00 1.00 0.48 0.48 Salinity 
 

Salinity 
 

Salinity 
 

 

2 9 2526.93 2.16 0.34 0.16 0.65 Salinity 
 

Salinity Temp Salinity 
 

3 10 2528.87 4.10 0.13 0.06 0.71 Salinity 
 

Salinity 
* 

Temp 
Salinity 

 

4 10 2529.02 4.26 0.12 0.06 0.77 Salinity 
* 

Temp 
Salinity 

 
Salinity 

 

5 10 2529.04 4.27 0.12 0.06 0.82 Salinity 
 

Salinity 
 

Salinity 
* 

Temp 

6 10 2529.14 4.38 0.11 0.05 0.88 Salinity Temp Salinity 
 

Salinity Temp 

7 9 2529.49 4.73 0.09 0.05 0.92 Salinity 
 

Salinity 
 

Salinity Temp 

8 9 2529.86 5.10 0.08 0.04 0.96 Salinity Temp Salinity 
 

Salinity 
 

9 10 2531.32 6.55 0.04 0.02 0.98 Salinity 
 

Salinity Temp Salinity Temp 

10 12 2532.09 7.32 0.03 0.01 0.99 Salinity Temp Salinity 
 

Salinity 
* 

Temp 
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Table 3.8: The ten best models (total N = 29) from the top-down model fitting approach for the 2014 data only. The models are ranked 

by their AICc value, a lower value being better. The site-level effects for all candidate models were specified as MaxPop only. K = no. 

model parameters. Δi = AICc difference. Mod. Lik. = model likelihood. Cumul. wi = cumulative Akaike weight. 

Model 

rank 
K AICc Δi 

Mod. 

Lik. 

Model 

wi 

Cumul. 

wi 

Maximum population 

(MaxPop) 

Days 50 

(D50) 

Lag phase 

(Lag) 

1 8 2524.78 0.00 1.00 0.3 0.3 
 

Sal 
  

Sal 
  

Sal 
 

2 13 2525.56 0.78 0.68 0.20 0.5 Temp Sal Accel Temp Sal Accel 
 

Sal Accel 

3 13 2526.02 1.24 0.54 0.16 0.66 
 

Sal Accel Temp Sal Accel Temp Sal Accel 

4 12 2526.58 1.8 0.41 0.12 0.78 
 

Sal Accel Temp Sal Accel 
 

Sal Accel 

5 13 2526.58 1.8 0.41 0.12 0.9 Temp Sal Accel 
 

Sal Accel Temp Sal Accel 

6 13 2529.11 4.33 0.11 0.03 0.93 Temp Sal Accel Temp 
 

Accel Temp Sal Accel 

7 13 2530.64 5.86 0.05 0.02 0.95 Temp Sal 
 

Temp Sal Accel Temp Sal Accel 

8 12 2531.87 7.09 0.03 0.01 0.95 Temp Sal Accel Temp Sal 
 

Temp Sal 
 

9 12 2531.90 7.12 0.03 0.01 0.96 Temp Sal Accel Temp 
 

Accel Temp 
 

Accel 

10 11 2532.01 7.23 0.03 0.01 0.97 
 

Sal Accel 
 

Sal Accel 
 

Sal Accel 
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Table 3.9: Estimates, with their associated standard error (SE), for each of the species-

wide and site-level model parameters from the best model in 2014 (bottom-up and top-

down model building methods provided the same best model). 

Parameter Type Estimate (SE) 

MaxPop Intercept Species-wide -0.48 (0.66) 

MaxPop Intercept sd Site-level 2.08 (10.13) 

MaxPop (Avg Sal – 31) Species-wide 0.65
 
(0.12) 

D50 Intercept Species-wide 4.48
 
(0.01) 

D50 (Avg Sal – 31) Species-wide 0.30 (0.01) 

Lag Intercept Species-wide 21.26
 
(5.60) 

Lag (Avg Sal – 31) Species-wide -20.55
 
(6.29) 

 

3.5.3. Observed values vs. fitted values 

3.5.3.1. Best bottom-up (BBU) and best top-down (BTD) 2014 model 

The proportion of the fitted values attributable to the site-level effect and the species-wide 

effect varies from site to site in the best BU and TD model in 2014 (Fig. 3.13). The fitted 

values predicted by the best model based on the 2014 data are almost a perfect fit, as can be 

seen by the black dashed line (full-model fitted values) fit almost directly over the observed 

mean C. intestinalis relative abundance (red solid line). The degree to which the site-level 

effects improve the full-model fit is displayed in Fig. 3.13, where some sites like ZZ and YB 

are fit largely by site-level effects. Conversely, SH and DW are fit almost entirely by species-

wide effects. As days after deployment was used as the known time component in the 

models, and ZZ was deployed much later than other sites in 2014, it resulted in the odd plot 

alignment of the growth at ZZ. The plotted growth (fitted and observed) also shows how 

much of the data is missing from the 2014 models, as missing values cannot be 

accommodated. The 95% confidence and prediction intervals for the BBU and BTD 2014 

display the high level of confidence in the model fit (Fig. 3.14). 
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Figure 3.13: Full-model fitted C. intestinalis relative abundance (black dashed line) for 

the 11 sites, fit by the 2014 best model (same model for BU and TD), and the fitted 

values using species-wide effect only (black dotted line). The observed C. intestinalis 

values (red line and circle markers) are overlaid. ZZ had a delayed deployment. 
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Figure 3.14: Full-fit from the 2014 best model (solid green line), with 95 % confidence 

intervals (dashed black lines), and 95 % prediction intervals (dotted black lines). 

3.5.3.2. Residual plots: BBU and BTD 2014 model 

On the whole, the residuals from the full-fit best BU and TD model in 2014 are good, not 

seeming to violate any assumptions egregiously (Fig. 3.15). The means of the residuals at the 

site-level are all centred near zero, while their variance around the mean is homogeneously 

distributed, with some exceptions. There are some outlying residuals; the most obvious of 

which can be seen at PB (positive and negative outliers) and PG (negative outliers). The 
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residuals from the species-wide effects of the best BU and TD model in 2014, when inspected 

in isolation, appear to violate a number of assumptions. Bias (heterogeneity of variance 

around the mean) is introduced into the residuals, while the means deviate from zero, 

substantially in some cases, at the site-level (Fig. 3.15). 

 

 

Figure 3.15: BBU and BTD 2014 residual boxplots by site, ordered alphabetically. The 

full-model residuals are displayed in the upper plot, while the species-wide effects 

residuals in isolation are displayed in the lower plot. 
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Heteroskedasticity is apparent in the residuals of the full-fit for the BBU and BTD in 2014 

(Fig. 3.16). While this is a violation of model assumptions, there is no bias in the residuals 

and heteroscedasticity is a very common feature in growth models, where the observed values 

are increasing rapidly through time. When a covariance and correlation structure was 

introduced into the model to account for variability within individual settlement plates 

through time, it did not improve the model or the heteroscedasticity of residuals, so the more 

parsimonious model without an autocorrelation structure was used. 

There is no relationship between the site-level effects from the best BU and TD model in 

2014 and the independent variable, mean salinity (Fig. 3.17). 

 

Figure 3.16: The full-model residuals for the BBU and BTD 2014 plot against days after 

deployment. 
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Figure 3.17: Mean salinity, the independent variable used in the BBU and BTD 2014 

plotted against the site-level effects to inspect their relationships in respect to 

homogeneity, with the correlation coefficient presented at the top of the plot. 

3.5.3.3. Best temperature-only model (BTO) 2014 

The best temperature-only model (BTO) contained the mean temperature metric in the 

MaxPop and D50 model parameters, while MaxPop was set as a site-level effect in addition 

to all model parameters being species-wide effects by default. The C. intestinalis values fit by 

the full BTO model are almost all a direct fit with the mean C. intestinalis percent cover 

observed (Fig. 3.18), except in a couple of cases, PB, PG, and SH, where the fitted growth is 

slightly different to observed. The proportion of the fit associated with species-wide effect 

and site-level effects can be visually assessed, with a wide degree of inter-site variation. The 

species-wide effects at some sites are consistently and markedly different to the observed 

values, like CC and IP. Some sites (FP) follow a similar pattern, only for the species-wide 

effects to then contribute to a closer fit compared to the observed values nearer the end of the 

monitoring period. The species-wide effects fitted values can also be very close to the 

observed values at the start of the monitoring period, with the fitted values deviating further 

from the observed values as time progresses: this is evident for VC, DW, and YB. A couple 

of sites, namely PB and ZZ are fit quite well by the species-wide effects.  

r = 0.14 
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Figure 3.18: Full-model fitted C. intestinalis relative abundance (black dashed line) for 

the 11 sites, fit by the 2014 best temperature-only model (BTO), and the fitted values 

using species-wide effect only (black dotted line). The observed C. intestinalis values 

(red line and circle markers) are overlaid. ZZ had a delayed deployment. 
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3.6. NLME model: 2015 

3.6.1. Preselection of abiotic variables 

Table 3.10: Stepwise removal of a single abiotic variable metric from the most highly 

correlated pair using the 2015 abiotic data. The pair of metrics most correlated at each 

step is highlighted. The light grey shaded metric was kept (Keep) while the metric 

shaded with dark grey was removed (Rem.) from the process. There was a selection rule 

to always have one metric from each variable remaining. Only pairwise complete 

observations were used in the correlation. 

Variable Metric 
Step 

1 

Step 

2 

Step 

3 

Step 

4 

Step 

5 

Step 

6 

Step 

7 

Step 

8 

Temp. 

Mean Keep  Keep     Keep 

Minimum   Rem.      

Maximum Rem.        

Salinity 

Mean  Rem.       

Minimum  Keep     Rem.  

Maximum         

pH 

Mean    Rem.     

Minimum         

Maximum    Keep    Rem. 

Water 

Motion 

Accel. 

Variance     Keep Rem.   

Minimum     Rem.    

Maximum      Keep Keep  

Pearson’s r 0.95 0.93 0.93 0.9 0.9 0.86 -0.74 -0.52 

 

The four abiotic metrics remaining after the stepwise removal process was carried out on the 

pairwise-complete observations of the 2015 abiotic data were mean temperature, maximum 

salinity, minimum pH, and maximum variance in acceleration (Table 3.10). All of the highly 

correlated (r > 0.9) metric pairings were within the same abiotic variable (e.g. mean and 

maximum temperature [r = 0.95]). As the highly correlated metrics were removed, some 

moderate-to-high correlations were present between metrics from two different abiotic 

variables (e.g. minimum salinity and maximum variance in acceleration [r = -0.74]).  

3.6.2. Bottom-up and top-down model candidate sets 
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In 2015 the best bottom-up model (BBU) was more parsimonious than the best top-down 

model (BTD), but the BTD had a much lower AICc value (Table 3.11 & 3.12 respectively). 

The BBU (parameter estimates found in Table 3.13) contained the maximum salinity metric 

in the MaxPop, Days50, and Lag model parameters. It also contained the maximum variance 

in acceleration and minimum pH metrics in the lag parameter. The BBU’s Akaike weight (wi) 

of 0.25 out of the total (N = 34) set of compared models (candidate set) for the bottom-up 

(BU) approach is quite low (Table 3.11). In the BU candidate set, the models ranked from 2 – 

5 in the candidate set were within an AICc difference (Δi) of two compared to the BBU, while 

models ranked 6 and 7 were within and Δi of 4 (Table 3.11). The low wi and the high number 

of models within an Δi of 4 suggests that there is a high level of uncertainty as to what the 

‘best’ model is in this set. 

The BTD was similar to the global model (GM), with all four of the abiotic metrics from the 

preselection process (Table 3.10) in each of the three model parameters, except for maximum 

variance in acceleration, which was not included in the MaxPop model parameter (Table 

3.12). The BTD (parameter estimates found in Table 3.13) has a relatively high number of 

parameters (K = 17), but AICc (Eq. 2) accounts for parameterization, effectively penalizing 

over parameterization if it occurs. In the TD candidate set of models there were two models 

within a Δi of 2 from the ‘best’ model and one additional model that had a Δi of < 4 (Table 

3.12). One model (5
th

 ranked model) in the TD candidate set was in the 4 – 7 Δi range (Table 

3.12). When accounting for rounding, the bottom nineteen models not presented from the TD 

candidate set in Table 3.12 have no cumulative weight. None of these models are worth 

considering any further. The abiotic metrics included in the parameters of the models with a 

Δi of 7 (also likely to be the best model) of the BTD are all quite similar, mostly missing a 

salinity metric or two in the model parameters, while the GM is also within a Δi of 2 from the 

BTD. While a wi of 0.47 for the BTD does not suggest that it is an overwhelmingly better 

model than any other in the candidate set, it is a more likely ‘best’ model within the set than 

was provided by the BU approach. Despite this, there is still a relatively high degree of 

uncertainty as to what the best model is in the TD candidate set. The Δi between the BTD and 

BBU is > 11, strongly suggesting that the BTD is much more likely to be the best 2015 

model, given these data. 
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Table 3.11: The ten best models (n = 34) from the bottom-up model candidate set from the 2015 data, ranked by lowest AICc value. The abiotic metric 

abbreviations are explained as: Temp. = mean temperature; Sal. = max salinity; pH = minimum pH; and Accel. = maximum variance in acceleration. 

K = number of model parameters. Δi = AICc difference. wi = Akaike weight. 

Model 

rank 
K AICc Δi 

Model 

Likelihood 

Model 

wi 

Cumulative 

wi 

Maximum population* 

(MaxPop) 

Days 50* 

(D50) 

Lag phase 

(Lag) 

1 12 6111.7 0 1 0.25 0.25  Sal   Sal   Sal Accel pH 

2 11 6111.9 0.25 0.88 0.22 0.47 
 

Sal   Sal   Sal  pH 

3 12 6112.7 1.01 0.60 0.15 0.62 
 

Sal   Sal Accel  Sal  pH 

4 13 6113.5 1.81 0.41 0.10 0.72 
 

Sal   Sal Accel  Sal Accel pH 

5 12 6113.6 1.89 0.39 0.10 0.82 
 

Sal Accel  Sal   Sal  pH 

6 12 6114.7 2.97 0.23 0.06 0.88 
Temp 

Sal   Sal   Sal  pH 

7 12 6115.7 4.00 0.14 0.03 0.91 
 

Sal  Temp Sal   Sal  pH 

8 11 6116.5 4.78 0.09 0.02 0.93 
Temp 

 
 

 

Temp 
 Accel 

Temp 
   

9 13 6118 6.29 0.04 0.01 0.94 
 

Sal   Sal  Temp Sal Accel pH 

10 10 6118.7 7.02 0.03 0.01 0.95 
 

Sal   Sal   Sal   
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Table 3.12: The ten best models from the 2015 top-down candidate set (n = 29), ranked by AICc value. Each model parameter (MaxPop, D50, and 

Lag) could have all four of the abiotic metrics in it in any given model. The metrics that were included in each model are shown in the table, with any 

grey filled cells showing which metrics were excluded from a given model. The abiotic metrics in the table have been assigned shorthand names as 

follows: Temp = mean temperature; Sal = maximum salinity; pH = minimum pH; and Accel = maximum variance in acceleration. K = number of 

model parameters. Δi = AICc difference. wi = Akaike weight. *MaxPop is the only site-level effect in all models within this candidate set. 

 

Model rank K AICc Δi 
Mod. 

Lik. 

Model 

wi 

Cumulative 

wi 

Maximum Population* 

(MaxPop) 

Days 50 

(D50) 

Lag phase 

(Lag) 

1 16 6100.2 0 1 0.47 0.47 Temp Sal 
 

pH Temp Sal Accel pH Temp Sal Accel pH 

2 16 6101.5 1.3 0.52 0.24 0.71 Temp Sal Accel pH Temp 
 

Accel pH Temp Sal Accel pH 

3 17 6102.2 2.0 0.36 0.17 0.88 Temp Sal Accel pH Temp Sal Accel pH Temp Sal Accel pH 

4 15 6103.3 3.2 0.20 0.09 0.97 Temp 
 

Accel pH Temp Sal Accel pH Temp 
 

Accel pH 

5 15 6106.5 6.4 0.04 0.02 0.99 Temp Sal Accel pH Temp 
 

Accel pH Temp 
 

Accel pH 

6 15 6109.0 8.8 0.01 0.01 1 Temp 
 

Accel pH Temp 
 

Accel pH Temp Sal Accel pH 

7 16 6114.5 14.4 0 0.00 1 Temp Sal Accel 
 

Temp Sal Accel pH Temp Sal Accel pH 

8 14 6115.5 15.4 0 0.00 1 Temp Sal Accel 
 

Temp Sal Accel 
 

Temp Sal Accel 
 

9 16 6115.5 15.4 0 0.00 1 Temp Sal Accel pH Temp Sal 
 

pH Temp Sal Accel pH 

10 15 6117.4 17.3 0 0.00 1 Temp Sal Accel 
 

Temp Sal Accel 
 

Temp Sal Accel pH 
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Table 3.13: Estimates (est.), with associated standard error (SE), for each of the species-

wide (Sp.) and site-level (Site) model parameters from the best model, for both the 

bottom-up (BBU) and the top-down (BTD) model building approaches using 2015 data. 

The absolute scaled effect size (ASES) is provided for each abiotic metric parameter. 

Temp. = mean temperature - 14; Sal. = maximum salinity - 30; pH = minimum pH - 8; 

Accel. = maximum variance in acceleration.  

Parameter Type BBU est. (SE) BBU ASES BTD est. (SE) BTD ASES 

MP Int. Sp. 1.06 (0.28) - 27.48 (15.97) - 

MP Int. sd Site 0.74 (12.42) - 2.12 (12.41) - 

MP Temp. Sp. - - -3.76 (2.33) 57.57 

MP Sal. Sp. -0.13 (0.20) 0.69 -2.54 (2.21) 13.08 

MP pH Sp. - - 18.10 (13.62) 9.51 

MP Accel. Sp. - - - - 

D50 Int. Sp. 4.56 (0.07) - 11.29 (3.62) - 

D50 Int. sd Site 0.20 (12.42) - - - 

D50 Temp. Sp. - - -0.92 (0.54) 14.07 

D50 Sal. Sp. 0.17 (0.07) 0.88 -0.31 (0.48) 1.57 

D50 pH Sp. - - 5.03 (3.18) 2.64 

D50 Accel. Sp. - - -674.31 (236.48) 5.07 

Lag Int. Sp. 14.88 (3.48) - 3.64 (0.51) - 

Lag Temp. Sp. - - -0.10 (0.06) 1.47 

Lag Sal. Sp. -2.77 (2.51) 14.22 -0.01 (0.10) 0.07 

Lag pH Sp. 52.64 (16.95) 27.64 -1.90 (1.18) 1.00 

Lag Accel. Sp. 6352.57 (3766.51) 47.80 1901.05 (1182.88) 14.30 

 

3.6.3. Observed values vs. fitted values 

3.6.3.1. Best bottom-up (BBU) 2015 model 

A purely qualitative visual inspection of the fitted values against observed according to the 

BBU model in 2015 (Fig. 3.19) suggests that this model has a greater proportion of fit 

associated with species-wide effects than the best model fit in 2014 (Fig. 3.13). The full-fit 

(species-wide and site-level) is very good for all sites, with almost perfect fit to the average 

observed growth. Only at PB and PG does the full fit slightly deviate from the average 

observed growth. Three sites, IP, DW, and WP have a good species-wide effect fit. SH and 
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PB have a good fit attributed to the species-wide effect until the end of the growth period 

when it deteriorates. 

 

Figure 3.19: Full-model fitted C. intestinalis relative abundance (black dashed line) for 

the 11 sites, fit by the 2015 best bottom-up model (BBU), and the fitted values using 

species-wide effect only (black dotted line). The observed C. intestinalis values (red line 

and circle markers) are overlaid. 

CC, FP, and PG all have a poor fit associated with the species-wide effect in the mid-section 

of the growth period, before it improves greatly by the end. In these cases, the species-wide 
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effect has accurately predicted the maximum population, but did not accurately fit the rate at 

which it got to the maximum point. VC, ZZ, and YB all have a good species-wide effect fit 

during the early period while no growth had actually occurred, before the species-wide effect 

over projects the growth rate and maximum population near the latter stages. 

3.6.3.2. Best top-down (BTD) 2015 model 

The full model fit for the ‘best’ top-down model (BTD) is very good, with almost complete 

parity with the average observed growth, except for a slight deviation at PG (Fig. 3.20). 

There are some noticeable differences between the species-wide effects fit in the BBU model 

(Fig. 3.19) and the BTD model (Fig. 3.20). The rate of growth and the maximum population 

size at CC according to the species-wide effects fit was lower in the BTD, leading to a poorer 

species-wide effect fit. Conversely, the maximum population predicted for YB by the BTD 

was much lower compared to the BBU, but this led to a much better species-wide effect fit. 

FP and PG have very similar species-wide effect fitting in both BBU and BTD, except for a 

slight lag in the time it takes for the FP predictions to come on par with the observed values 

in the BTD. IP, SH, DW, and WP all have very good species-wide effect fitting in the BTD, 

arguably all better than the BBU, with the exception of WP, that is slightly worse. The BTD 

species-wide effect fit for PB is obviously worse, while VC and ZZ are about the same in 

both models. The common trend in both BBU and BTD is that the sites that are in the mid-

range of C. intestinalis abundance, having high maximum population size but taking slightly 

longer to reach that point than the highest abundance site, are all fit well by the species-wide 

effect. It is the sites that are the highest and lowest abundance that require the site-level effect 

to account for the variation not unexplained by the abiotic variables. There is a high level of 

confidence in the model fit from the BTD 2015 (Fig. 3.21). 
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Figure 3.20: Full-model fitted C. intestinalis relative abundance (black dashed line) for 

the 11 sites, fit by the 2015 best top-down model (BTD), and the fitted values using 

species-wide effect only (black dotted line). The observed C. intestinalis values (red line 

and circle markers) are overlaid. 
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Figure 3.21: Full-fit by the 2015 BTD (solid green line), with 95 % confidence intervals 

(dashed black lines), and 95 % prediction intervals (dotted black lines). 

 

 

 



99 

 

3.6.3.3. Residual plots: BTD 2015 model 

 

 

Figure 3.22: BTD 2015 residual boxplots by site, ordered alphabetically. The full-model 

residuals are displayed in the upper plot, while the species-wide effects residuals in 

isolation are displayed in the lower plot. 
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On the whole, the residuals from the full-fit BTD in 2015 are good, not seeming to violate 

any assumptions egregiously (Fig. 3.22). The means of the residuals at the site-level are all 

centred near zero, while their variance around the mean is homogeneously distributed, with 

some exceptions. There are some outlying residuals; the most obvious of which can be seen 

at ZZ (positive outlier) and WP (negative outliers). The residuals from the species-wide 

effects of the BTD in 2015, when inspected in isolation, appear to violate a number of 

assumptions. Bias (heterogeneity of variance around the mean) is introduced into the 

residuals, while the means deviate from zero, substantially in some cases, at the site-level 

(Fig. 3.22). 

 

Figure 3.23: The full-model residuals for the BTD 2015 plotted against days after 

deployment. 

Heteroskedasticity is apparent in the residuals of the full-fit for the BTD in 2015 (Fig. 3.23). 

While this is a violation of model assumptions, there is no bias in the residuals and 

heteroscedasticity is a very common feature in growth models where the observed values are 

increasing rapidly through time. When a covariance and correlation structure was introduced 

into the model to account for variability between and within individual settlement plates 

through time, it did not improve the model or the heteroscedasticity, so the more 

parsimonious model without an autocorrelation structure was used. There are no relationships 

between site-level effects and the independent variables in the BTD 2015 (Fig. 3.24). 
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Figure 3.24: Predictor variables used in the BTD 2015 plotted against the site-level 

effects to inspect their relationships, with the correlation coefficient presented at the top 

of each plot. 

3.6.3.4. Best temperature-only model (BTO) 2015 

The best temperature-only model (BTO) in 2015 contained the mean temperature metric in 

the MaxPop, D50, and Lag model parameters, while MaxPop was specified as a site-level 

effect in addition to all model parameters being species-wide effects by default. The C. 

intestinalis values fit by the full BTO model are almost all a direct fit with the mean C. 

intestinalis percent cover observed (Fig. 3.25). The proportion of the fit associated with 

species-wide effect and site-level effects are clearly visible, with a wide degree of inter-site 

variation. The visual inspection of the fitted vs observed values for the BTO 2015 indicates 

r = 0.25 r = 0.06 

r = - 0.001 r = 0.25 
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that a fair portion of the observed growth is fit well by the model. The observed growth at 

five sites (PG, IP, SH, DW, WP, and YB) is matched very closely by the fitted values (Fig. 

3.25). The fitted values for CC and FP are not quite as good, but they do improve nearer the 

end of the monitoring period. The fitted values at PB, VC, and ZZ start well, before deviating 

substantially from the observed growth. 

 

Figure 3.25: Full-model fitted C. intestinalis relative abundance (black dashed line) for 

the 11 sites, fit by the 2015 best temperature-only model (BTO), and the fitted values 

using species-wide effect only (black dotted line). The observed C. intestinalis values 

(red line and circle markers) are overlaid. 
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3.7. Model accuracy 

Models developed using data from the same year, regardless of whether they are fit by BU, 

TD, or another approach (BTO etc.), tend to have very similar error rates and predictive 

power when considering the full (species-wide effects and site-level effects) model fit (Table 

3.14). However, model performance can vary substantially when comparing the species-wide 

effects alone (Table 3.14). Inspecting the full-fit of models from 2014 and 2015, the lowest 

error rate (MAE and RMSE) and joint-highest modelling efficiency (MEF) is provided by the 

best temperature-only model (BTO) from 2014, although the Spearman rank correlation is 

slightly lower than the BBU/BTD/BSO 2014 model. 

Table 3.14: Model accuracy results for the best bottom-up (BBU) and best top-down 

(BTD) models for 2014 and 2015. The four methods of model assessment are: mean 

absolute error (MAE), measured in units of C. intestinalis %; root mean square error 

(RMSE), measured in units of C. intestinalis %; model efficiency (MEF), a measure of 

the variance explained by the model [similar to R2 (Amaro et al., 1998)]; and the 

Spearman rank correlation coefficient (ρ). Full = The model with both species-wide and 

site-level effects. SW = Species-wide effects only. BTO = Best temperature-only model. 

BSO = Best salinity-only model. Best BU & TD 2014 model is also the BSO for 2014. 

Model Year 
MAE 

Full 

MAE 

SW 

RMSE 

Full 

RMSE 

SW 

MEF 

Full 

MEF 

SW 

ρ 

Full 

ρ 

SW 

Null 
a 

2014 5.95 34.41 10.93 42.18 0.94 0.06 0.88 0.35 

BTO 
a 

2014 3.85 26.16 8.86 37.02 0.95 0.16 0.89 0.56 

Best BU & TD 
a 

2014 4.86 26.33 9.97 35.66 0.95 0.33 0.9 0.6 

Null 
a 

2015 6.57 19.87 13.08 34.38 0.90 0.34 0.90 0.72 

Null 
b 

2015 6.00 20.61 12.44 31.97 0.91 0.43 0.92 0.72 

BTO 
a
 2015 5.92 16.00 12.52 28.63 0.91 0.54 0.91 0.81 

BSO 
b
 2015 5.88 20.46 12.33 32.17 0.91 0.42 0.92 0.71 

BBU 
b 

2015 5.88 20.16 12.278 32.24 0.92 0.42 0.92 0.73 

BTD 
a
 2015 5.83 20.08 12.32 34.17 0.91 0.34 0.92 0.77 

BTD 
a 
* 2015 5.81 18.2 12.31 31.27 0.91 0.45 0.92 0.78 

* BTD model in 2015 developed using MaxpH as the metric for pH variable, instead of MinpH. This was a 

serendipitous finding as a part of model building exploration, due to a lack of model convergence using MinpH. 
a
 Models that contain a site-level effect for MaxPop parameter only.

 

b
 Models that contain a site-level effect for the MaxPop and D50 parameters. 
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Upon closer inspection of the species-wide effects fit by the 2014 BTO, the MEF drops 

noticeably compared to the BBU/BTD/BSO model in 2014, which explains ~ twice the 

amount variability within the 2014 dataset. 

The variation in C. intestinalis relative abundance explained by the best 2014 model, which 

includes the mean salinity metric in all three model parameters, is a marked improvement 

from the variation explained by a basic growth model devoid of any abiotic information, 

depicted by the 2014 null model. The null model in 2014 has a very low MEF, only 

explaining about 6 % of the observed variability in C. intestinalis relative abundance. The 

best 2014 model improved this basic model MEF by ~ 25 %, suggesting salinity explains 

about a quarter of the variability in the observed data in 2014. In contrast to 2014, a basic 

growth model in 2015 can explain between 34 – 43 % of the observed variation in C. 

intestinalis relative abundance, depending on the site-level effects specification (2015: Null 
a
 

and Null 
b
 - Table 3.14). The addition of abiotic metrics and the resultant best models from 

the BU and TD approaches in 2015 did not improve the MEF of the models, suggesting that 

associations between abiotic metrics and C. intestinalis relative abundance were not as strong 

in 2015 when compared to 2014. Models that only contained temperature metrics did not 

rank well in the BU and TD approaches in 2015, according to AICc, (Table 3.11 & 3.12), but 

the BTO in 2015 has the highest MEF when considering the species-wide effects alone. 

Despite the strong association between mean salinity and C. intestinalis relative abundance in 

2014, the BSO in 2015 did not dominate the candidate sets of models developed in either the 

BU or TD approach (Table 3.7 & 3.8 for 2014 compared with Table 3.11 & 3.12 for 2015), 

while the species-wide effects associated with the BSO 2015 were very similar to a null 

model with no abiotic information (Table 3.14). 

3.8. Nested cross-validation 

All of the model assessment methods yielded very similar results in the nested cross-

validation tests, when compared to the results from the full-model accuracy results (Table 

3.14 & 3.15). This indicates strongly that the models have a high predictive power when used 

to predict C. intestinalis abundance based on a portion of the intra-annual or combined 

dataset that was excluded from the model fitting process. 
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Table 3.15: Model fit assessment results from the nested cross-validation procedure, as 

measured by MAE, RMSE, MEF, and ρ. 

Model Year MAE (%) RMSE (%) MEF ρ 

BTO 2014 3.85 8.51 0.95 0.88 

BBU/BTD/BSO 2014 4.86 9.53 0.94 0.9 

BTO 2015 5.92 12.26 0.91 0.91 

BSO 2015 5.87 12.13 0.91 0.92 

BBU 2015 5.88 12.03 0.91 0.92 

BTD 2015 5.83 12.08 0.91 0.92 

  BTD * 2015 5.81 12.06 0.91 0.92 

 

3.9. Inter-annual model predictions  

All models, be they fit on 2014 or 2015 data performed relatively well when predicting the 

combined dataset (Table 3.16). This would be expected, as the nested-cross validation 

showed that the models are very good at predicting the intra-annual variation (Table 3.15), 

and the combined dataset contains the data that were used to fit the given model carrying out 

the predictions, as well as the additional ‘new to the model’ data from the other year that was 

not involved in the model fitting process. The predictive power of models varies much more 

when they are used to predict the observed values from the other year in isolation, with some 

very poor predictions when the 2015 models were predicting 2014 data, in particular. The 

2014 BTO was able to predict about 30 % of the variation in the 2015 data (Table 3.16), 

while it could predict almost 50 % of variation in the combined dataset. There are probably 

two major contributing factors that led to the very poor (high error rates and negative MEF) 

predictive power of the 2015 BBU and BTD predicting 2014 data. First, it is likely as a result 

of the differing inter-annual abiotic trends, where the role of salinity in fitting 2014 models, 

as well as being evident upon visual inspection of the abiotic plot alongside C. intestinalis 

abundance (Fig. 3.7 and Fig. 3.8), was more important than in 2015. Given that the 2015 

models are very accurate based on the data they were fit with, they do not perform well when 

predicting a set of data with a different trend. While this is most likely a major player in the 

poor prediction, it was almost certainly exasperated by the small number of data in 2014 for 

which the 2015 models could predict. This small dataset could lead to a high frequency of 

erroneous predictions, especially due to the absence of data from the beginning of the 

monitoring period where overall variability in observed C. intestinalis values was lower. This 
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is highlighted by the fact that when the 2014 models were used to predict the 2015 data (a 

substantially larger dataset, with more measurement points for each site-level and the start of 

the monitoring period), they perform much better predicting ~30 % of variability in these 

data, despite the variable inter-annual trends being proportional for each respective year. The 

most parsimonious model in 2015, the BTO, provided better inter-annual prediction than the 

2015 BBU or BTD (Table 3.16). 

Table 3.16: Assessment of the results from model predictions carried out on ‘test’ 

datasets that were wholly or partially not included in the initial model fitting. 

Model Test data MAE (%) RMSE (%) MEF S rho 

BTO 2014 2015 18.57 35.1 0.31 0.79 

BTO 2014 Combined 15.23 31.13 0.47 0.8 

BBU/BTD/BSO 2014 2015 21.4 35.67 0.27 0.67 

BBU/BTD/BSO 2014 Combined 17.4 31.70 0.45 0.71 

BTO 2015 2014 19.11 36.46 0.18 0.73 

BTO 2015 Combined 11.11 24.73 0.64 0.84 

BSO 2015 2014 25.40 39.68 0.10 0.64 

BSO 2015 Combined 12.37 24.97 0.65 0.83 

BBU 2015 2014 32.96 48.49 - 0.22 0.14 

BBU 2015 Combined 11.92 25.31 0.65 0.78 

BTD 2015 2014 36.10 53.65 - 0.50 0.40 

BTD 2015 Combined 12.56 27.54 0.58 0.80 

BTD 2015 * 2014 33.47 49.59 - 0.28 0.42 

BTD 2015 * Combined 11.96 25.79 0.63 0.81 
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4. Discussion 

4.1. Summary of findings 

I carried out in situ monitoring of four abiotic variables in the nearshore marine environment, 

in tandem with biological monitoring of C. intestinalis population growth, across the entire 

Atlantic shore of NS. The scale of this sampling regime was novel in regard to the high-

resolution in situ abiotic recordings that complement the invasive tunicate monitoring. There 

was an association between C. intestinalis growth and salinity in 2014: this same trend was 

not evident in 2015. With a more comprehensive dataset in 2015, the best models, ranked via 

their AICc value, include a metric from each of the four abiotic variables in at least one 

model parameter. This could suggest that they all contribute useful information to explain the 

variability in C. intestinalis growth. However, similar model accuracy assessment results 

between the null models and the BBU and BTD in 2015 indicate that the lack of any clear 

associations between the abiotic variables and C. intestinalis growth is a more probable cause 

for all abiotic variables being included in the best models. The species-wide effects from the 

BTD* 2015 accounted for approximately half of the total variability observed in C. 

intestinalis growth (~ 45 % MEF, Table 3.14). Despite this, the null models from 2015 have 

MEF values of 0.34 and 0.43, depending on the parameters assigned as site-level effects 

(Table 3.14). This suggests that in 2015, a basic growth model with no abiotic input can 

account for between 34 – 43 % of the variability in the observed C. intestinalis response. 

Including abiotic information into the model does improve AICc substantially (Table 3.11 & 

3.12), but does not improve the model accuracy assessment results greatly (Table 3.14). This 

suggests that despite the lack of strong associations between abiotic conditions and growth, 

the information does improve model fitting. This is in contrast to the trends observed in 2014, 

where the null model explained very little variability in the observed C. intestinalis growth, 

but there was a strong association with salinity that improved model fitting and variability 

explained (Table 3.7, 3.8 & 3.14). On the whole, the population response across the different 

sites displayed a more consistent pattern in 2015, being fit much better than 2014 with a basic 

‘null model’ containing no abiotic information. However, when the response is broken down 

on a site by site basis, the pattern exhibited was remarkably variable, as can be seen in the 

observed vs. fitted plots (Fig. 3.13 & Fig. 3.20). This inter-annual variation suggests that 

none of the monitored abiotic variables can be excluded from future discussions about the 

potential abiotic contributors to C. intestinalis population growth, but salinity and 
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temperature do appear to be the most prominent, despite being modest and changeable in 

their predictive power. These results provide novel insight into the proportion of population 

variability that can be explained by these four abiotic variables. This exploratory study offers 

theoretical backing to pursue a variety of hypotheses that could further explain observed 

variability in C. intestinalis growth. 

4.2. Abiotic determination of population growth 

4.2.1. Temperature 

Temperature appears to have an effect on C. intestinalis population growth (Table 3.16), with 

its absence in the 2014 best model possibly due to data exclusion form the model as a result 

of the missing data for other variables. In general, the warmer the water is at a site, the more 

likely C. intestinalis is to grow well. Temperature influences physiological processes and this 

general effect is universal (Serafini et al., 2011). There are many ways that warmer 

temperatures could enhance physiological processes, resulting in increased C. intestinalis 

growth, such as earlier onset of gametogenesis, earlier spawning and recruitment, and faster 

growth rate, to name a few (Ramsay, 2009). My results support the existing field (Carver et 

al., 2003; Howes et al., 2007; Ramsay, 2009; Sephton et al., 2011) and laboratory (Vercaemer 

et al., 2011) studies based in Atlantic Canada that describe the importance of temperature on 

C. intestinalis growth. 

4.2.2. Salinity 

Salinity is well touted in the literature as a factor that explains tunicate distribution (Auker 

and Oviatt, 2008; Epelbaum et al., 2009; Lambert and Lambert, 1998), C. intestinalis 

included (Therriault and Herborg, 2008a; Vercaemer et al., 2011). This makes sense, as 

ascidians are largely considered to be stenohaline osmotic conformers and are largely 

immobile, so they cannot move when abiotic conditions fluctuate and become unfavourable 

(Shumway, 1978). In 2014 this held true, as there was a strong relationship between salinity 

and C. intestinalis abundance (Table 3.7. and 3.8.). The tolerance pattern described by 

Vercaemer et al. (2011) was evident, with lower salinity sites tending to have the lowest C. 

intestinalis abundance. For the periods where data were available for all abiotic metrics in 

2014, salinity explained the most variation in the maximum population size and the rate of 

growth. In 2015, the association between salinity and C. intestinalis growth changed, with a 

negative relationship between C. intestinalis growth and increasing salinity (data not shown: 
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coefficients from models with a single salinity metric only describe this association). 

Compared to 2014 when it was the sole variable in the best model, it appears as if salinity 

was not as influential in explaining the observed variability in 2015, but still provided useful 

information for the best model. The difference in the association between salinity and C. 

intestinalis between the years could be due to factors that were not measured that influenced 

the relationship between salinity and C. intestinalis growth, causing it to change, or the 

relationships in both years could be caused by unknown factors that changed but happen to be 

correlated with salinity. The timing and duration of low salinity periods may also have a 

bearing on the overall impact of salinity on a given population of C. intestinalis. Exposure to 

water ~ 20 ppt caused the siphons of individuals in a laboratory experiment to close tightly, 

preventing any fluid clearance, thereby leading to no oxygen or food intake (Shumway, 

1978). The individuals used in this experiment were collected from the mid-west coast of the 

UK, so it is more likely than not that they were C. intestinalis, as the region of sympatry with 

C. robusta has not been shown to extend further north than the south coast of England. The 

availability of food and oxygen prior to low salinity conditions and the duration of low 

salinity, hence influencing the length of time the individuals closed their siphons, could 

influence the affect that low salinity has on overall respiration, growth, and reproduction. 

Short periods of low salinity due to sporadic freshwater runoff from heavy precipitation may 

not have a negative effect if the individuals exposed could tightly close their siphons and 

cease intake of water for the period. Conversely, a sustained lower salinity could hinder 

individuals more so. The timing of extremes for any abiotic variable is important in regard to 

the life-stage of the majority of a population. To explain that, take the example of pulse event 

of low salinity. This, or an extreme high or low of any abiotic variable, may have a greater 

impact on the pelagic larval stage of C. intestinalis (Pineda et al., 2012a). If a period of low 

salinity were to coincide with a peak spawning event, this could have serious implications for 

the population through reduced fertilization, settlement and recruitment, especially if the 

parents had been subjected to relatively high salinity conditions until then (Renborg et al., 

2013). 

4.2.3. Water flow 

My results suggest that in 2014, water flow data did not contribute useful information to the 

best model, while in 2015 it was included in the BTD, suggesting the information improved 

model fitting. It is possible that increased water flow conditions affect fertilization, larval 

behaviour and ability to swim and settle, as well as physiologically stressing adult 
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individuals. C. intestinalis tends to frequent sheltered habitats (Petersen and Svane, 1995), 

not being known to tolerate wave exposure (Howes et al., 2007). 

4.2.4. pH  

Lower pH is potentially a beneficial factor for C. intestinalis (Dupont et al., 2009, 2008). 

While the inclusion of pH was not possible in 2014 due to the missing data and small sample 

to fit models with, in 2015 it was a contributing variable in all parameters of the BTD. This 

suggests that pH is associated with the population size and growth rate of C. intestinalis. It is 

difficult to discern a strong relationship from a purely visual inspection of abiotic and 

abundance plots in the results (Fig. 3.9 and 3.10), but  the results from the models which 

include only a single maximum pH metric in a single model parameter  suggest that pH does 

have a negative association with C. intestinalis growth (data not shown). These results agree 

with the minimal information available from the literature (Dupont et al., 2009, 2008). The 

inability to model pH adequately in 2014 combined with sparse available information 

preceding my study makes it all the more difficult to infer relationships in regard to pH. But, 

given the suggestion in the literature that lower pH is beneficial for C. intestinalis larval 

development in combination with its contribution to the best model in 2015 mean that it 

cannot be ruled out as having an effect on C. intestinalis abundance. If lower pH does indeed 

improve the growth and abundance of C. intestinalis, this is not good news as lower pH could 

negatively affect the growth of mussels (Bechmann et al., 2011), while it is largely 

considered to be detrimental for the majority of marine invertebrates, especially calcifying 

organisms (Dupont et al., 2009). This is an abiotic relationship that is ripe for further study, 

as is discussed later in section 4.6.3. 

4.3. Modelling approach 

4.3.1. Mixed-effects use in marine modelling 

Most mixed-effects modelling research based in the marine environment uses morphological 

measures of the species in question at the individual organism level, occasionally with some 

form of environmental model component, particularly fisheries modelling where individual 

size is of particular interest (Averbuj et al., 2015; Escati-Peñaloza et al., 2010; Hernández-

Otero et al., 2014). In these cases, the random effects are introduced into the models to 

estimate the degree of variability within and between individuals for a variety of spatial and 

temporal factors. Others use a combination of individual morphological measurements in 
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tandem with abiotic variables in the mixed-effects models. I am yet to find a marine based 

comparison example to this study, where abiotic variables are exclusively used to predict 

parameter estimates for a relative population growth measure at the species-wide (fixed 

effect) level, as well as at a site-level (random effect). It also seems to be quite rare to try and 

ascertain a predictive growth model for a species with a short life-span and a rather stochastic 

growth pattern. Most studies that are similar in their design measure growth over a much 

longer period, like in forestry research where the use of mixed-effects modelling is 

widespread (Adame et al., 2008b; Amaro et al., 1998; Calegario et al., 2005; Subedi and 

Sharma, 2011).  

4.3.2. Was NLME appropriate? 

I manged to produce models within each year that were very accurate (Table 3.15 and 3.16). 

Using the BU and TD model development approaches, a sizeable component of the model fit 

(33 % in 2014 and 45 % in 205) was associated with species-wide effects. The use of site-

level effects in addition to the species-wide effects assisted in estimating the unexplained 

variation observed, improving the modelling process substantially compared to species-wide 

effects alone (Table 3.14). Confidence in the model parameter estimates is high, as shown in 

the confidence and prediction interval plots (Fig. 3.14 & 3.21). Not only did models have 

good explanatory power via the species-wide and site-level effects when fit to the whole 

dataset, they were robust under nested cross-validation tests too (Table 3.16), as well as 

displaying a relatively good measure of predictive power in some cases (Table 3.17). One 

apparent downside of the AICc ranking used to assess the best models is the lack of an easy 

assessment of the model fit attributable to the species-wide effects. I was interested in the 

ability of abiotic variables as predictors of C. intestinalis growth, so while the NLME model 

provided well-fit models, it does not have an inbuilt method to favour models that are more 

reliant on species-wide effects, rather than the site-level effects. Selecting models with a 

higher proportion of species-wide effects in the fit was desirable, hence why the additional 

model accuracy assessments, nested cross-validation, and inter annual predictions were 

important. 

4.3.3. Bottom-up versus top-down approach 

Overall, bottom-up and top-down modelling approaches provided relatively similar ‘best’ 

models. In 2014, both approaches provided an identical conclusion, that the best model 

contained only salinity. In 2015, the TD approach suggested that the global model, minus one 
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water acceleration metric, was the best model, while the best model resulting from the BU 

approach was a more parsimonious (but less likely based on AICc) model without any 

temperature metrics at all. While determining a set of candidate models (hypotheses) 

established a priori before any model fitting is best practice, it is not always feasible or even 

entirely sensible for some exploratory studies. In a sense, both BU and TD approaches are 

theoretical in nature, as the abiotic variables monitored were carefully selected and the 

preselection of metrics limits potential overfitting with collinear components. The TD 

approach also ensures that no combination of abiotic metrics was overlooked due to human 

error. For these reasons, in addition to the exploratory nature of this study, the combined BU 

and TD approach used appears to be justified. In this case there was a relatively high degree 

of complexity when fitting the NLME model (difficulty in determining starting values for 

parameter estimates and cases of models not converging) so this dual-approach provided a 

good solution to test a range of candidate models for years in isolation, as well as for the 

combined dataset (see Appendix E). 

4.3.4. Model reliability: inference versus prediction 

The fitted models allow us to infer that a substantial amount of observed variability in C. 

intestinalis growth can be explained by the null growth model equation, the observed abiotic 

variables, or via the incorporation of a measure of the unexplained variability via site-level 

effects. A major issue for consideration is whether or not these inferences actually lead to 

accurate predictions (Shmueli, 2010). The results suggest that until further data is collected to 

ascertain the long-term variation that occurs in C. intestinalis growth in response to the 

abiotic variables like salinity, the best models at explaining variation in these data are not 

necessarily the best model for predictive purposes (Table 3.17). With only two years of 

observed data currently available, it is impossible to say whether this variation is going to 

continue to fluctuate, or whether 2014 or 2015 was an aberration. Over time, the ‘true’ trend 

could emerge from the currently variable trends observed for C. intestinalis’ response to 

abiotic conditions.  This could mean that with the addition of more information, the best 

models incorporating all four abiotic variables could produce quite accurate predictions 

consistently. 

4.3.5. Sources of potential experimental error 

The exclusive inclusion of salinity in the best 2014 model is most likely due to the quantity of 

missing data that led to large portions of the temperature data at the start of the monitoring 
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period to be excluded from model fitting. The late spring/early summer temperature is 

correlated to the subsequent growth rate of C. intestinalis (data not shown), so the necessity 

to remove these data from the 2014 model to allow the inclusion of salinity, pH and water 

flow variables is likely to have influenced the final model. 

The predation pressure for any given site is an unknown factor in this study and the potential 

effects of which are discussed later in section 4.4. An area where this unknown factor may 

have been introduced error or imbalance to the dataset due to the experimental design is if 

increased predation was experienced by C. intestinalis populations at sites where the water 

column was shallow and the bottom of collectors (rope or weight) was resting on the bottom 

of the harbour during a portion of low tide. Likely primary predators of the adult C. 

intestinalis individuals, such as crabs and sea-stars may have had easier access to their pray 

when the bottom of the collectors were touching the benthic substrate, even if only during the 

lowest tidal period. This potential source of error could be reduced in future studies by 

ensuring deployment takes place when the tide is at its lowest point for all sites and reducing 

the depth at which collectors are submerged. If the water column is too shallow, then 

submerging the collectors at a very shallow depth could be introducing a new source of 

potential error, so at that point if both of those are a risk, a new site may need to be 

considered. Alternatively, a different settlement collector design could be used, such that 

there is only one plate per collector, thus reducing the overall depth required and instead 

increasing the number of single-plate collectors as compensation. 

There are also some sources of abiotic and population variability that were purely 

anthropogenic in nature that may have influenced my observations. During the spring of 2015 

there was substantial infrastructural work carried out at Port Bickerton that involved some 

dredging. There is some evidence that turbidity can influence C. intestinalis (McLaughlin et 

al., 2013), so the possibility of dredging creating turbid conditions beyond those naturally 

occurring at that site are unknown. The growth in 2015 at Port Bickerton was reduced 

compared to 2014, but there is no way to know if that is related to a potential turbidity effect, 

as I didn’t monitor that. Another source of potential anthropogenic influence occurred at 

Indian Point, where large quantities of adults were removed due to the removal of biofouled 

mussel farm long-lines before the 2015 monitoring period. This is important as the propagule 

pressure may have been reduced at this site in 2015 as a result, with the potential to effect 

growth. C. intestinalis growth was lower on the settlement plates in 2015 at Indian Point, as 

well as the overall biomass being lower (pers. obvs.). 
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4.4. Inter-site and inter-annual stochasticity  

My results show that all four of the abiotic variables measured can contribute to explaining 

the variability observed in C. intestinalis growth. In addition, temperature, salinity, and water 

flow (wave exposure) are regarded in the literature as primary abiotic variables that 

determine the distribution and growth of C. intestinalis, while pH has been suggested as 

playing a role in larval physiology too. Despite this, my results also show that there is clearly 

much more going on than just abiotic control of C. intestinalis population growth. 

Determining the influence of abiotic variables on the success of invasive species in the 

marine environment can be very difficult (Dijkstra et al., 2008). There are numerous factors 

in addition to abiotic conditions, both biotic and anthropogenic in nature, that could influence 

the establishment, growth, survival, reproduction, and range expansion of invasive species. In 

the context of C. intestinalis growth, the genetic diversity within and between sites could 

influence the variable response to abiotic conditions, both between sites within a single year, 

as well as influencing inter-annual variability in growth response to abiotic conditions. Biotic 

interactions, both resistant and facilitative in nature (predation and competition), could also 

cause inter-site and inter-annual fluctuations in the C. intestinalis growth response to abiotic 

conditions (Lockwood et al., 2013). There are examples where the abiotic variables I 

recorded explain, through species-wide effects, almost all of the growth variability at a 

specific site (Fig. 3.19, IP, DW, and SH), while at other sites the observed growth is not 

influenced by the abiotic conditions to any great degree (largely fit by site-level effects). 

There did not appear to be an obvious or consistent geographic trend (that could indicate a 

regional abiotic or biotic effect not monitored in the study) in the response of C. intestinalis 

growth.  

4.4.1. Genetic diversity 

The heterogeneous influence of abiotic conditions on C. intestinalis growth could be due to a 

host of factors, acting in isolation or in combination. The phenotypic response to any given 

environmental exposure is due to the molecular make-up of a given organism (Serafini et al., 

2011). Therefore, genetic diversity resulting in variable gene expression when individuals are 

exposed to the same abiotic conditions could result in different phenotypic trends between 

sites and inter-annually at the same site. There could be substantial genetic diversity on the 

provincial scale, but also within sites, with a combination of factors determining the genetic 

composition of introduced populations. Diversity on the macro-provincial scale is largely due 
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to anthropogenic vector transport (Zhan et al., 2012). On the meso- and micro-scale, the 

proximity of populations to each other is generally a good indicator of the genetic 

relationship, within the benthic marine community  (López-Legentil et al., 2014).  But the 

level of connectivity between local sites may vary from region to region depending on 

geographic barriers and hydrodynamic conditions affecting dispersal, as well as vector 

movement through recreational boating and aquaculture trade. Genetic diversity within a site 

or population could be influenced intra- or inter-annually by multiple introductions from 

different source populations, as well as being affected by the size of the introductions 

(propagule pressure). There is no easy way to tell how related a given population is to another 

in the context of this study without carrying out genetic sequencing. To survive and thrive in 

a new environment, you can either be well adapted to the introduced environment from the 

off, or you can have the mechanisms to tolerate or adapt to stress. These two options are most 

likely represented by gradients of response. Some of the ways this dynamic could play out for 

C. intestinalis in NS are discussed next. 

4.4.1.1. Suitability to the environment 

Given the wide tolerance range that C. intestinalis is reputed to possess, it means that it 

probably find a relatively large number of areas it is introduced to as suitable environments, 

compared to other less-tolerant species. C. intestinalis also has the ability to rapidly mature 

and become reproductively viable, while also possessing the ability to produce multiple 

generations per year (Lambert and Lambert, 1998). Hence if a sizeable introduction of 

individuals occurs, a portion of which are well suited to the new environment, and if there are 

no other major contributing factors, then growth is likely to increase quickly. The diversity of 

introduced individuals is described by Lockwood et al. (2013) as the “genetic lottery”, and it 

can influence establishment success, as well being a key determinant in the rate of population 

expansion. If an introduction were to occur and the collection of individuals as a whole are 

not that well suited to the environment, due to low numbers or genetic homogeneity, 

establishment is less likely, while the rate of growth of that population if it does become 

established will be subsequently reduced. This may result in a lag in population growth for 

some time, perhaps lasting months or years depending on other contributing abiotic and biotic 

factors. An example where this may have happened would be  in 2014 at Dingwall and 

Wedgeport, where the low salinity tolerant individuals survived and reproduced the most, 

leading to an overwintering population that were tolerant to low salinity. While the 

population was small in 2014, the resident population could have been better suited to the 
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conditions in 2015. This in turn could have resulted in a population capable of enhanced 

growth and reproduction under similarly low salinity conditions in 2015. This type of 

prominent and rapid natural selection initially after a population is introduced is thought to be 

an important dynamic in invasion ecology (Lavergne and Molofsky, 2007). If this type of 

selection did occur, the extent to which it did could have been variable from site to site, 

offering one possible explanation for variability in observed C. intestinalis growth not 

accounted for by the monitored abiotic variables.  

The abiotic conditions that parents live in affect the survival of C. intestinalis offspring 

(Renborg et al., 2013). Individuals that survived in lower salinity conditions in 2014 may 

have produced offspring that were able to tolerate lower levels of salinity in 2015, as opposed 

to the individuals in areas of relatively higher salinity in 2014, resulting in offspring not as 

well suited to the lower salinity conditions in 2015. It is also possible that the source 

population that produced the larvae that settled on the plates I monitored were relatively far 

away (natural dispersal) and were subjected to different abiotic conditions to those present at 

the monitored site inhabited by their progeny. Given the findings of Renborg et al. (2013), 

this could suggest that larvae would not do as well in these unfamiliar conditions. The extent 

to which this could occur would depend on site specific abiotic conditions as well as the 

genetic diversity of the populations. 

4.4.1.2. Response to stress 

The balance between stress management and energy efficient growth could also be important 

in the phenotypic variation observed amongst populations of C. intestinalis (López-Maury et 

al., 2008). An analysis focused primarily on the genetic reasoning behind variable 

temperature tolerance could help to explain the potential C. intestinalis has to respond to a 

range of abiotic stresses. Although the study was most likely conducted on C. robusta, as 

they collected samples from California, Serafini et al. (2011) carried out molecular 

examination of individuals from two members of the Ciona genus after manipulative 

temperature treatments. They found that C. intestinalis (most likely C. robusta) maintained 

higher levels of molecular chaperones compared to another species C. savignyi. They suggest 

this is a possible reason why C. intestinalis (although distinct to C. robusta they are the 

closest relatives within the Ciona genus) seems to have a good capacity to respond quickly to 

heat stress. This high steady-state level of chaperones could also have implications for the 

response to other physiological stress, not just temperature. The ability to respond to stress 

through molecular mechanisms could vary between populations of C. intestinalis, depending 
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on their molecular differences. While temperatures in NS would not appear to often reach a 

point where it would be subjecting C. intestinalis individuals to upper thermal limits, 

adaptation to a colder environment, hence resulting in differing ability to commence 

reproduction and growth earlier in the year could be an important factor. The molecular 

flexibility that C. robusta has been shown to possess (Serafini et al., 2011) is likely to be 

shared to some extent by C. intestinalis as well, providing a potential mechanism for C. 

intestinalis’ ability to tolerate a wide range of abiotic conditions that may induce degrees of 

stress. If an individual is able to account for stress more easily than others, it may result in an 

ability to allocate greater resources to growth and reproduction. If the molecular make-up of 

populations at different sites observed here in NS is different, it could provide an explanation 

for some of the variability in C. intestinalis growth not explained by the observed abiotic 

variables. Likewise, if two sites have quite a similar molecular composition, then this could 

be an explanation for consistency in response, either explained or not explained by the 

observed abiotic variables. 

4.4.2. Biotic interactions 

4.4.2.1. Predation 

It is widely documented that C. intestinalis (Petersen and Svane, 1995) and the closely related 

C. robusta (Caputi et al., 2015) can experience quite abrupt population decline. It has been 

suggested that a long-term cyclical recruitment phenomenon underlies the pattern, but what 

regulates it is still uncertain. In the native range of C. intestinalis there are observational data 

that describe a shared seven year cyclical pattern of C. intestinalis and its dominant predators 

(Lundälv and Christie, 1987). Much like the classic cyclical population pattern exhibited by 

snowshoe hare and Canadian lynx (Elton, 1942), it’s possible that C. intestinalis exhibits a 

similar type of coupled boom-bust cyclical pattern in tandem with native predators. Lundälv 

and Christie (1987) do note however that there were local deviations from the overall 

common cyclical pattern displayed by predators and prey, while they suggest that fluctuations 

of hydrodynamics conditions in tandem with large-scale climatic events could contribute to 

the pattern. Cyclical predator-prey relationships that we are unaware of in NS may have 

substantial effects dependent upon the peaks and troughs of both the predator and prey 

population abundance. Given the dynamic nature of introduced species’ relationship with 

predators in the introduced range, this could be a highly variable pattern if present. Predation 

of larvae by fishes is also a suggested mechanism of spatial limitation, due to supressed 
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dispersal, in the native range (Petersen and Svane, 1995). If variable predation pressure is 

occurring in different areas of the province, this in turn could affect the population 

connectivity on a local scale (through dispersal limitation), which ties into the discussion 

about genetic diversity in section 4.4.1. The occurrence of C. intestinalis predation to some 

degree in NS is almost a certainty. The feeding trials outlined in the introduction (section 

1.3.4.) describe the potential predators in question, but the extent to which native predators 

prey upon C. intestinalis compared to native prey is not clear, especially in a field setting. 

Explicit testing of the enemy release hypothesis (ERH) is required in the future to be able to 

come to any conclusion about the ramifications for variable C. intestinalis growth. Other 

invasive species, such as the green crab may in fact aid C. intestinalis by not feeding on them 

as much as other species, while competing with and reducing numbers of native predators 

that would eat C. intestinalis. This invasional meltdown hypothesis (IMH) has not been tested 

in relation to C. intestinalis, or many marine invertebrates for that matter. The lack of 

manipulative experiment in this field of research severely limits the avenues for discussion 

that follow a firm footing, with any suggestions about the predator-prey dynamics occurring 

in NS being rather subjective. In saying that, predation is certainly a viable candidate to 

potentially explain some of the observed variability in this study that was not accounted for 

by the monitored abiotic variables. A study that was conducted in relation to C. intestinalis 

predation in NS was actually based on testing the contribution of an NIS, Caprella mutica, to 

the biotic resistance hypothesis (BRH) of the receiving environment. Collin and Johnson 

(2014) did indeed find that C. intestinalis recruitment was dramatically reduced by C. mutica, 

as a result of predation of C. intestinalis larvae. The scope for variable interactions related to 

the ERH, BRH via native and other NIS or invasive species, or the invasional meltdown 

hypothesis lead me to conclude that there is a strong possibility that these dynamic and 

variable interactions could be a contributor to the unexplained variability observed in C. 

intestinalis growth during this study. It is also possible that all these factors contribute to 

variable levels with the potential to cause localized large-scale die-offs (Collin and Johnson, 

2014; Dumont et al., 2011). The recovery of a population then depends on a number of 

factors that tie into the initial establishment of an invasive population, as were previously 

discussed. To touch on one, propagule pressure is thought to be pivotal in successful invasion 

(Drolet and Locke, 2016; Ricciardi et al., 2013; Verling et al., 2005), so variable levels of 

predation on spawning adults and larvae, as well as different abiotic effects could lead to 

variable inter and intra-annual population responses. 
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4.4.2.2. Competition 

Another factor that could cause intra- and inter-annual variation in C. intestinalis population 

growth is competition. Interspecific competition with C. intestinalis was tested in PEI using 

settlement plates that were pre-settled by the invasive colonial tunicates Botryllus schlosseri 

and Botrylloides violaceus (Paetzold et al., 2012). While this study showed that plates 

previously occupied by one of the colonial tunicates were less abundant in C. intestinalis 

compared to the plates that had no previous settlement on them, it was over carried out over a 

relatively short period of time and did not account for abiotic conditions. One such study that 

investigated abiotic conditions and interspecific competition was conducted on B. violaceus. 

It showed that interspecific competition appeared to have less of an effect on B. violaceus 

population growth rate compared to variable spatial environmental conditions (Grey, 2011). 

Further manipulative experiments that address abiotic conditions and interspecific 

competition between C. intestinalis and a range of native, NIS and invasive species are 

required to improve the understanding of these complex interactions.  

The stochastic nature of species introductions and invasion dynamics could have resulted in a 

piecemeal pattern of effects determining population growth throughout NS. A multitude of 

effect ‘regimes’ determining patterns of population growth are likely, made up of different 

levels of abiotic and biotic contributions. If this is the case, long and short-term fluctuations 

in abiotic conditions, predator abundances, competitor abundance, and resource availability 

would affect populations in variable ways. 

4.5. Climate Change 

With the consensus that global temperatures are rising at an unprecedented rate and predicted 

to continue on this trend (Pachauri et al., 2014), the issue of climate change is foremost in the 

minds of many ecologists. Marine benthic invertebrate communities are heavily influenced 

by temperature, while it is the widely accepted that invasive species are well adapted for 

environmental change, fortified by their tendency to have a wide range of environmental 

tolerance (Lord et al., 2015). Not only is temperature of concern, so too are pH due to ocean 

acidification as a result of CO2 uptake, salinity changes as a result of changes in freshwater 

input as well as alterations in oceanic currents, while a projected increase in the frequency 

and intensity of extreme weather events certainly has the potential to alter water flow, 

particularly high flow events. All four of the abiotic variables I monitored have to be 

considered in the discussion about climate change, while all four have the potential to 
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influence C. intestinalis population dynamics. The way in which future changes will actually 

effect the distribution and abundance of C. intestinalis in NS and elsewhere remains largely 

unknown. Not only do these variables have the potential to shape sessile invertebrate 

communities on a short timescale and in relation to rapid environmental stochasticity, but 

they are also likely to shift in the long-term in relation to anthropogenic forcing. Sea surface 

temperature, perhaps the most prominent abiotic condition that can shape the changes of 

future C. intestinalis populations, is going to rise (Pachauri et al., 2014). The degree to which 

it will increase is predominantly dependent upon the atmospheric CO2 concentration in the 

future, but a range of models suggest it could be from c.1.5°C – 6°C by 2100, without being 

able to rule out extreme climate sensitivity of > 10°C  (Pachauri et al., 2014; Thompson, 

2015). These predictive models tend be globally administered, with a relatively coarse 

resolution of ~100 km. High resolution (~10 km) models carried out for the Northwest 

Atlantic suggest that warming in the region of the Gulf of Maine and the Scotian Shelf is 

likely to be 3 – 4 °C by 2100, with resultant ecosystem effects expected (Saba et al., 2016). 

Salinity, especially in the nearshore is likely to be influenced by the predicted increase in 

precipitation, especially the predicted rise of major precipitation events. Absorption of CO2 

by the oceans will only continue to lower the pH and create a more acidic environment. With 

an increase in major weather events, water motion, especially in wave exposed sites has the 

potential to become even more influential on benthic marine environments and biological 

communities. The complex nature of abiotic interactions with the population dynamics of C. 

intestinalis currently suggest that it is very difficult to predict how global change may 

influence the species in the future. Viewing any one abiotic variable in isolation is unlikely to 

provide an accurate picture of the scope of change under climate change (Todgham and 

Stillman, 2013), while the combined picture is ultimately very complicated. My results do 

suggest that a portion of C. intestinalis response in the future will be influenced by the 

changing abiotic environment.  

4.6. Moving forward 

4.6.1. Genetic sequencing and analysis  

Completing the genetic sequencing of the individuals sampled in 2015, as well as 

commencing analysis on the sequences in hand for the 2014 samples is a high priority. It is 

important to discern the genetic diversity of the province-wide population, the molecular 

similarity between sub-populations, as well as getting an insight into the pattern of 
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introduction and spread, all of which can have knock on effects relating to potential range 

expansion (Lavergne and Molofsky, 2007). I will also continue to explore the methods by 

which a genetic similarity factor can be incorporated into the growth model. The 

identification of major genes responsible for differential growth trajectories within a 

population is well understood  in sectors such as forestry and agriculture, and are often 

expressed using quantitative trait loci (QTL) (Wu et al., 2003, 2002). A method is presented 

by Malosetti et al. (2006) to incorporate growth modelling with QTL via nonlinear mixed 

modelling. This could be a suitable method to develop a new model, incorporating genetic 

information, to further explain the variable growth in C. intestinalis populations.  

4.6.2. Improved NLME model input 

An element not included in the model is the size of individuals compared to the number of 

individuals at a given site, both of which are currently summarized together using the single 

percent cover measure. This information, in addition to the measure of relative abundance 

using the percentage cover could improve model fitting in the future. Considering logistical 

and theoretical arguments, the percent cover abundance measure was the best choice for this 

study and provides a good measure of relative abundance at each site, but it is not flawless. 

Once the settlement plates had saturated at a site, like what happened at CC and FP in 

particular, there is then no additional measure of how abundance increases later on in the 

growing season at those sites. The rate at which the plates reach saturation provides 

information in itself, but it is not a perfect system of measurement. In addition, adult 

fecundity is size dependent, so reproductive output and potential subsequent recruitment from 

local individuals may vary from site to site depending on the size of individuals.   

Including a measure of the food availability, via chl-a data, in the model is desirable. Point-

samples of one measurement per measurement period are not an ideal data type to include in 

a model that contains high resolution abiotic data for the other variables. An alternative 

option is to use chl-a data obtained from satellite images (Antoine et al., 1996; Longhurst et 

al., 1995). However, obtaining chl-a data for coastal regions via satellite imagery can be 

problematic due to confounding effects on water colour (Barnes et al., 2014; Craig et al., 

2012; Gons et al., 2002). The point-sample chl-a data collected in 2014 (see Appendix B) 

will be used to assess the suitability of chl-a data obtained from satellite imagery. Extracting 

satellite image chl-a data for the corresponding periods of time that point-samples were taken 

during 2014, and establishing the relationship between the two, will allow us to assess the 
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accuracy of satellite image data. If there is a reasonable relationship between the point-

samples and the satellite image data, that would provide a good source of chl-a data to 

include in the model. It is also possible to build a local chl-a model, similar to that of Barnes 

et al. (2014) and Craig et al. (2012), using the in situ point-samples and available satellite 

data. This model tuned specifically to our study area is likely to provide superior estimates 

compared to generic models used for satellite data (Craig, pers. comm.).  

Incorporating abiotic and biotic information from the winter of both years would be a 

potential way of improving the models. Unfortunately, there is no available data about the 

overwintering C. intestinalis populations. There is however winter temperature data available 

for the 2013/2014 winter, while winter temperature data could be accessed through online 

databases for the 2014/2015 winter period. Another notable factor of interest for the winter 

period is the extent of ice cover and potential ice scour for each site. Ice scour has been 

shown to have an influential role on rocky intertidal communities in NS (Belt et al., 2009), 

but to my knowledge there have been no studies documenting the effect of ice scour on 

biofouling species inhabiting artificial substrate in harbours or bays. It is possible that the 

variation in pack ice levels from year to year and duration of ice occupation of harbours could 

have an effect on the biofouling community. As usual, it is not quite as simple as increased 

ice quantity resulting in more disruption to the biological community. Ice cover can have an 

insulating effect (Scrosati and Eckersley, 2007), so depending on the nature of the ice cover 

and extent of scour, it may provide an advantage for overwintering C. intestinalis populations 

by increasing water temperature over the harshest months of the year. The level of 

disturbance over winter could also leave substrates more vulnerable to new introductions the 

following spring and summer, so once again there is a catalogue of potential interactions and 

complications when assessing the effect of ice on the biofouling communities. 

There are a number of abiotic variables that were not monitored in this study, for logistical 

reasons, that could influence C. intestinalis growth. Different exposure to irradiance is 

believed to influence C. intestinalis settlement and growth. A study carried out in Chile 

(possibly C. robusta, although displaying temperature preferences similar to those of known 

C. intestinalis populations) found that full exposure of the study species to direct solar 

radiation had a negative effect on survival (Madariaga et al., 2014). I didn’t monitor 

irradiance due to the difficulty in obtaining accurate results with the length between site 

visits. The settlement plates provide cover from direct solar radiation, while the floating 

docks and general harbour substrates provided some shelter from direct exposure to solar 
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radiation. Consistency in placement of collectors in relation to degree of solar radiation 

exposure was a component of location choice. In addition, two of the sites with the least 

amount of shade provided by surrounding infrastructure, the mussel leases IP and SH had 

high C. intestinalis abundance. It is also suggested that turbidity of the surrounding 

environment can influence settlement and growth of C. intestinalis (McLaughlin et al., 2013), 

while dissolved oxygen concentration, nutrient levels, as well as environmental pollutants 

may all have an effect on the growth of C. intestinalis. 

4.6.3. Future experiments 

Controlled laboratory survival and growth experiments can confirm the presence of ‘true’ 

abiotic effects, but it could be the case that these ‘true’ effects are severely altered in the 

reality of a natural habitat, due to a multitude of additional contributing factors (Todgham 

and Stillman, 2013). My study emphasises how variable the response of C. intestinalis 

populations to abiotic effects is. Some C. intestinalis growth is determined by major abiotic 

players in the marine environment, like temperature and salinity. However, a large 

component of the response is due to other factors that remain unknown for now. Controlled 

growth experiments are commonly used. The environmental tolerance of a widely distributed 

tunicate species, Microcosmus exasperates, in the Mediterranean (Nagar and Shenkar, 2016),  

was investigated in much the same way that laboratory experiments were carried out on C. 

intestinalis individuals from NS (Vercaemer et al., 2011). Both studies showed that there are 

important relationships between temperature and salinity, outlining the species’ tolerance and 

the response of the respective tunicates. While these studies are very important, in the future 

it is worth bearing in mind the truly heterogeneous response of C. intestinalis, and possibly 

other invasive benthic species with heterogeneous distributions, on a large spatial scale in an 

uncontrolled environment. For abiotic variables that are well established as important 

variables in determining the growth of a species, I would suggest that more intricate 

experimental designs should be tested. In the case of temperature and salinity, new laboratory 

controlled growth and reproductive experiments could be conducted with the addition of 

direct and indirect predation effects, as well as variable competition effects. 

This study has indicated that both pH and water flow are influential in determining C. 

intestinalis growth. As the track record in the literature for these two abiotic variables is not 

as good compared to that of temperature and salinity, basic controlled laboratory experiments 

assessing pH  and water flow effect on larval development, settlement and recruitment are 
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required. In addition to testing the effects on larvae, these two abiotic variables could be used 

to test the effect on adult individuals, in relation to their growth, reproductive capacity and 

stress response. In a similar fashion to experiments carried out by Pineda et al. (2012b) 

investigating the gene expression of Styela plicata to salinity and temperature stress, C. 

intestinalis could be tested for stress tolerance to pH and water flow changes. In addition to 

that, simple experiments testing the fecundity and growth rate of adult individuals under 

varies pH and water flow treatments could provide useful information about how these 

abiotic variables influence C. intestinalis biology. 

As has been mentioned previously, and as is emphasised by this study, field studies 

investigating new abiotic effects that could explain C. intestinalis growth are important. Only 

through field studies is the true complexity of an effect, or lack thereof, observed. Also, field 

studies addressing biotic interactions in relation to abiotic variables are important to pursue. 

The effect of predation could be tested through manipulative experiments using caged 

settlement plates to exclude fishes, crabs, sea star, large predators. Competition effects could 

be tested using manipulated settlement plates, with previously plates submerged alongside 

controls. 

4.6.4. Abiotic data calibration of online databases 

In a similar fashion as described above for assessing the appropriateness of satellite chl-a 

data, the other in situ abiotic measurements could be used to assess the accuracy of large-

scale sources of data from online databases. If there are good relationships between the online 

databases and the fine-scale in situ measurements, this could results in much greater sampling 

potential, as the need to conduct abiotic monitoring could be reduced, leaving more time and 

resources for biological monitoring. 

4.7. Implications for management 

Efforts have been made to create predictive models for the life-history stages and potential 

distribution of C. intestinalis in the past (Patanasatienkul et al., 2014; Therriault and Herborg, 

2008a). These prior efforts were not reliant on extensive field trials, instead relying on what 

could be found in the literature. While this is beneficial in terms of being less labour and time 

intensive, there are some concerns with models developed prior to this study. There has been 

a tendency to include (potentially erroneous) information obtained from studies conducted on 

a distinct species (C. robusta) in C. intestinalis models (Patanasatienkul et al., 2014; 
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Therriault and Herborg, 2008a). Temperature and salinity are commonly used in predictive 

modelling for C. intestinalis (Therriault and Herborg, 2008a), so it is somewhat problematic 

when the tolerances assigned to C. intestinalis for these key components in the model are 

based on information from two species with a known difference in temperature tolerance. 

While using temperature and salinity may indeed be the best approach for simplicity of the 

model and also in terms of availability of data, it is crucial to use starting information 

germane to the species at hand, as well as noting that there is potential for a very 

heterogeneous response of C. intestinalis to these abiotic variables. The true strength of a 

model could be considered as the knowledge of where it is weakest and has limitations. The 

famous phrase ‘all models are wrong; some are useful’ loosely coined by George Box (Box, 

1976) is pertinent to this work. In this respect, we can move forward with a better 

understanding of the variable C. intestinalis growth response in relation to abiotic variables, 

while also having a well suited tool to assist in accounting for this heterogeneity through the 

mixed-effects modelling. 

The likelihood-theory approach used here lends itself to aiding management decisions, as it is 

easy to identify how likely models are to be the best model in comparison to one another. 

This provides a template to guide model selection depending on a given set of management 

criteria or based on the information that is realistically available. In this study, all available 

information from four abiotic variables was used to create the best explanatory model for 

variable C. intestinalis growth. But with pre-set criteria that only temperature and salinity 

data are readily available, the approach can be easily tailored to suit these requirements and 

select the best model within these constraints. If all of the available independent predictor 

variables used in model development are attainable for the given spatial range that 

predictions are desired, then the most likely model can be chosen, with a knowledge of the 

degree of uncertainty surrounding such a model. When working with a complex system that 

is difficult to obtain information for, then ultimately the more parsimonious models that 

would be easier to obtain good abiotic data for (e.g. temperature and salinity via online 

databases) should be chosen above highly parameterized models containing variables that it is 

more difficult to obtain data for (pH in this case). Ease of use for a predictive model should 

surely govern model selection when the difference between a ‘better’ more parametrized 

model and a more parsimonious model is not substantial. 

While the best-temperature only models provided the most consistent predictions across both 

years, the models containing more abiotic variables have the potential to be better predictive 
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models. In order to avoid error in prediction due to the variable response of C. intestinalis to 

abiotic variables inter-annually, a sound predictive framework is required. I propose a Venn 

diagram predictive framework. In this framework, the abiotic variables that can be obtained 

are chosen. In this case temperature and salinity are obtainable for the province of NS. The 

best model from both 2014 and 2015 containing these two variables would then be used to 

predict C. intestinalis growth for the nearshore environment for all of NS. Then the two 

predictive maps would be compared. In areas that are forecast as low abundance sites by both 

models, these are the most likely to be unsuitable for C. intestinalis. In areas that both models 

predict as high abundance, these are the most likely to be suitable for C. intestinalis growth 

and most likely to result in a high abundance population. For areas that the two models do not 

agree on, proceed with caution, as the success of a potential population at these sites is the 

most uncertain, and would remain so until further data can be obtained to improve either the 

model, or the degree of belief in the ‘true’ response of C. intestinalis to abiotic conditions. 

For management purposes, I would advise the use of models developed based on the more 

comprehensive 2015 dataset, or to use the Venn-diagram prediction approach outline above. I 

would also advise the use of a reduced model with only salinity and temperature to create a 

projection map for C. intestinalis growth in Atlantic Canada.  This would maximise the area 

that predictions could be made for, due to the availability of data for these two abiotic 

variables. This study indicates that pH and water flow data would improve a predictive 

model, but in reality the lack of high resolution data for these two abiotic variables would 

severely limit the potential range for predictions. The use of the extended and most likely 

model according to this study, with all four abiotic variables, could be used for smaller scale 

predictions based on a specific location or multiple locations where obtaining the necessary 

abiotic data would be more manageable than for a large scale provincial prediction. 

The results from this study emphasise the importance of continued long-term monitoring of 

C. intestinalis populations in NS. However, the results also suggest that increased sampling in 

a more localized area may be as effective at determining long-term population dynamics as 

compared to monitoring across the whole province. By testing alternative hypotheses to 

explain the variability in C. intestinalis growth that was not explained by the four abiotic 

variables here, as well as continued monitoring of growth in relation to abiotic variables 

using the NLME modelling approach, this may be sufficient to improve predictive ability of 

C. intestinalis population growth in the future. 
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5. Conclusions 

Some of the heterogeneous response of C. intestinalis population growth can be attributed to 

environmental conditions, with growth responding to changes in surface water temperature, 

salinity, pH, and water flow. Salinity and temperature appear to be the most important abiotic 

determinants of population growth across both years. The influence of salinity is highly 

changeable, while temperature also had varying degrees of association with the observed 

population growth, based on this study. The extent to which water flow and pH influence 

population growth is unclear, but they did improve model fitting in 2015. 

This study emphasised the variable and sometimes unpredictable dynamics of C. intestinalis 

population growth, highlighting the necessity to conduct more long-term studies. A key 

priority moving forward should be improving prevention of further introductions of C. 

intestinalis around the province and further afield. While variability of C. intestinalis growth 

response to abiotic conditions is high, this study showed that mixed-effects modelling can 

provide a well fitted model that performs consistently under standard model validation and 

nested cross-validation testing. 

The models fit with data from either 2014 only or 2015 only predicted with variable accuracy 

when used to predict the observed data from the year not included in model fitting. The best 

model (BU and TD the same) from 2014 was able to predict 2015 data with ~30 % accuracy. 

On the other hand, the best model (TD) in 2015 performed very poorly at predicting 2014 

observations, with a negative model efficiency score. This poor performance is likely a 

combination of a smaller dataset devoid of any observations from the beginning of the 

monitoring period, as well as the shift in C. intestinalis growth response to abiotic conditions 

between the two years. In the interest of model parsimony, temperature-only models were 

also assessed in the model validation, cross-validation, and prediction processes. While 

models containing temperature exclusively did not come out on top in the BU and TD model 

building approaches, they performed almost as well (BTO 2014) and much better (BTO 

2015) at predicting inter-annual observations from data not used in the model fitting. This 

suggest that temperature is the most consistent abiotic predictor of C. intestinalis growth. 

This exploratory study has laid out some fundamental baseline information about C. 

intestinalis growth in relation to a group of important abiotic variables in the nearshore 
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environment. These findings can be built upon in order to continue improving the 

understanding of C. intestinalis population growth. 
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Appendices 

Appendix A: Deployment and monitoring schedules 

Table A.1: Dates of deployment and site visits for 2014. Note that Venus Cove was 

deployed at the end of May and Cape Canso near the end of June. As a result, Cape 

Canso has one less site visit, the first of which corresponds to the second site visit at all 

other sites, and so on. 

Site Deployment Visit 1 Visit 2 Visit 3 Visit 4 Visit 5 

Ship Harbour 1-May 5-Jun 3-Jul 31-Jul 5-Sep 6-Oct 

Indian Point 2-May 6-Jun 3-Jul 31-Jul 5-Sep 6-Oct 

Camp Cove 3-May 7-Jun 4-Jul 1-Aug 6-Sep 6-Oct 

Fall's Point 3-May 7-Jun 4-Jul 1-Aug 6-Sep 6-Oct 

Yarmouth Bar 3-May 6-Jun 4-Jul 2-Aug 7-Sep 7-Oct 

Wedgeport 4-May 6-Jun 4-Jul 1-Aug 6-Sep 7-Oct 

St Ann's Bay 7-May 10-Jun 7-Jul 5-Aug 11-Sep 8-Oct 

Little River 7-May 10-Jun 7-Jul 5-Aug 11-Sep 8-Oct 

Dingwall 7-May 10-Jun 7-Jul 5-Aug 11-Sep 9-Oct 

Petit-de-Grat 8-May 11-Jun 6-Jul 3-Aug 10-Sep 12-Oct 

Port Bickerton 9-May 12-Jun 8-Jul 4-Aug 9-Sep 9-Oct 

Venus Cove 29-May 11-Jun 6-Jul 3-Aug 10-Sep 9-Oct 

Cape Canso 25-Jun NA 8-Jul 4-Aug 9-Sep 11-Oct 

 

Table A.2: Dates of deployment and site visits for 2015. Note the three new sites, SP 

having since been removed from consideration in the analyses. Deployment was roughly 

a week later in 2015 compared to 2014, due to ice-cover in harbours later in the year.  

Site Deployment Visit 1 Visit 2 Visit 3 Visit 4 Visit 5 

Ship Harbour 12-May 5-Jun 6-Jul 3-Aug 31-Aug 5-Oct 

Indian Point 8-May 5-Jun 6-Jul 31-Jul 31-Aug 5-Oct 

Camp Cove 7-May 6-Jun 3-Jul 1-Aug 1-Sep 2-Oct 

Ingomar 7-May 6-Jun 3-Jul 2-Aug 1-Sep 2-Oct 

Fall's Point 7-May 6-Jun 3-Jul 2-Aug 1-Sep 2-Oct 

Yarmouth Bar 8-May 6-Jun 2-Jul 1-Aug 2-Sep 3-Oct 

Wedgeport 8-May 6-Jun 2-Jul 1-Aug 1-Sep 3-Oct 

St Ann's Bay 13-May 11-Jun 9-Jul 6-Aug 8-Sep 26-Oct 
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Table A.2. cont. 

Little River 11-May 9-Jun 9-Jul 6-Aug 7-Sep 9-Oct 

Dingwall 11-May 9-Jun 9-Jul 6-Aug 7-Sep 9-Oct 

Petit-de-Grat 13-May 10-Jun 8-Jul 5-Aug 4-Sep 7-Oct 

Port Bickerton 10-May 8-Jun 7-Jul 3-Aug 3-Sep 6-Oct 

Venus Cove 10-May 11-Jun 5-Jul 4-Aug 5-Sep 7-Oct 

Cape Canso 10-May 8-Jun 5-Jul 4-Aug 3-Sep 6-Oct 

Louisbourg 11-May 11-Jun 10-Jul 5-Aug 8-Sep 8-Oct 

St Peters 13-May 10-Jun 8-Jul 5-Aug 4-Sep 8-Oct 

 

Appendix B: Additional sampling procedures  

B.1. Chlorophyll-a point-sample data  

B.1.1. Obtaining the water sample 

Point sample measures of the chlorophyll-a (chl-a) concentration at each site were taken 

during each monthly site visit during the 2014 field season. Three water samples were taken 

during each visit from a depth of approximately 1.5 m using a Van Dorn Bottle water 

sampler. Each sample was about 500 ml in volume. The three water bottles used to house to 

500 ml water samples were rinsed out with the first portion of the water sample from the Van 

Dorn Bottle to ensure there was no dilution or contamination from previous samples. This 

was unlikely regardless, as the water bottles were cleaned between all sites to minimize the 

potential for unwanted species introductions.  Once the water sample was stored in the bottle, 

they were wrapped in aluminium foil, labelled, and placed in a cooler box. These steps are to 

prevent light getting into the water sample and to reduce heat exposure, which could degrade 

the chl-a in the sample.  

B.2.1. Water sample filtration, chl-a extraction, and sample preservation. 

Filtration of the water sample to remove and store the chl-a was conducted as soon as 

possible, always within four hours of the water sample being taken. A clean graduated 

cylinder was rinsed with each water sample prior to 100 ml of the sample being measured. A 

hand-pump filtration system was used to filter the water.  A 25 mm glass fibre filter (GFF) 

was placed in its holder in the filtration system. The filtration beaker was rinsed with a 

portion of the original water sample before being locked into place above the filtration paper, 
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creating an air-tight seal. The GFF holder and the filtration beaker fit on top of a container 

that receives the filtrate. The 100 ml water sample was poured into the beaker and the hand-

pump is squeezed until sufficient pressure is generated to slowly filter the water sample 

through the GFF. Once the water had fully passed through the paper, the beaker is unlocked 

and the GFF is removed using a forceps and placed into a scintillation vial with 10 ml of 90 

% acetone solution. Each scintillation vial was clearly labelled, covered with aluminium foil 

to eliminate any irradiance and then placed in a cooler box until it could be stored in a freezer 

for long-term storage.  

B.3.1. Fluorometry  

Fluorometric analysis was carried out on the chl-a extractions using a Turner Design Model 

10-005 R Fluorometer at the Bedford Institute of Oceanography (BIO), Nova Scotia. Samples 

were transported to BIO in a cooler and allowed to sit at room temperature for an hour prior 

to analysis. A control ‘blank’ is run first, consisting of a cuvette with filled with 90% acetone 

only. For sample measurement, I began by rinsing the cuvette with 90% acetone twice. After 

shaking the scintillation vial to ensure the solution is homogenous, I rinsed the cuvette with 

the sample twice before filling the cuvette. I took an initial reading from the fluorometer 

output display, adjusting the sensitivity switches as required (these allow for very low and 

high quantities of chl-a to be detected using the same machine) before adding two drops of 

HCl and taking a second reading. I calculated the chl-a measurements (mg/l) according to the 

latest fluorometer calibration equation and the readings taken from the machine.  

B.4.1. Results 

Table B.1: Chl-a measurement results from fluorometry analysis presented for each site 

and date of measurement. 

Site code Date Mean chl-a (mg/l) Standard error No. Samples 

CC 5/3/14 0.95 0.02 3 

CC 6/7/14 1.58 0.01 3 

CC 7/4/14 2.99 0.60 3 

CC 8/1/14 0.96 0.48 3 

CC 9/6/14 2.63 0.01 3 

CC 10/6/14 1.85 0.35 3 

DW 5/7/14 0.54 0.02 3 

DW 6/10/14 0.74 0.03 3 

DW 7/7/14 2.54 0.13 3 

DW 8/5/14 5.42 0.55 3 

DW 9/11/14 1.34 NA 1 
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DW 10/9/14 0.69 NA 1 

Table B.1. cont. 

FP 5/3/14 0.74 0.06 3 

FP 6/7/14 1.58 0.06 3 

FP 7/4/14 0.37 0.09 3 

FP 8/1/14 1.75 0.33 3 

FP 9/6/14 1.92 0.23 3 

FP 10/6/14 0.71 0.06 3 

IP 5/2/14 0.84 0.35 4 

IP 6/6/14 0.31 0.12 3 

IP 7/3/14 0.41 0.02 3 

IP 7/31/14 0.70 0.04 3 

IP 9/5/14 0.43 0.02 3 

IP 10/6/14 0.91 0.07 3 

LR 5/7/14 0.25 0.10 3 

LR 6/10/14 0.65 0.07 3 

LR 7/7/14 1.98 0.76 3 

LR 8/5/14 1.00 0.04 3 

LR 9/11/14 17.91 NA 1 

LR 10/8/14 0.34 NA 1 

PB 5/9/14 0.56 0.07 3 

PB 5/16/14 0.36 0.03 3 

PB 6/1/14 0.88 0.09 3 

PB 6/12/14 0.79 0.07 3 

PB 7/8/14 1.19 0.27 3 

PB 8/4/14 1.38 0.37 3 

PB 9/9/14 0.78 0.02 3 

PB 10/9/14 0.95 NA 1 

PG 5/8/14 0.36 0.02 3 

PG 5/16/14 0.27 0.02 3 

PG 6/11/14 1.67 0.78 3 

PG 7/6/14 3.60 2.46 3 

PG 8/3/14 4.26 0.83 3 

PG 9/10/14 0.86 0.03 3 

PG 10/12/14 2.17 NA 1 

SA 5/7/14 2.18 0.16 3 

SA 6/10/14 0.49 0.01 3 

SA 7/7/14 1.21 0.05 3 

SA 8/5/14 0.89 0.04 3 

SA 9/11/14 2.32 NA 1 

SA 10/8/14 2.84 NA 1 

SH 5/1/14 1.40 0.13 3 

SH 6/5/14 1.14 0.05 3 

SH 7/3/14 1.78 0.03 3 

SH 7/31/14 1.11 0.07 3 

SH 9/5/14 0.99 0.08 3 
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SH 10/6/14 1.74 0.28 2 

Table B.1. cont. 

VC 5/29/14 0.46 0.11 3 

VC 6/11/14 0.79 0.13 3 

VC 7/6/14 1.66 0.19 3 

VC 8/3/14 2.19 0.10 3 

VC 9/10/14 1.42 0.02 3 

VC 10/9/14 2.36 NA 1 

WP 5/4/14 1.94 0.23 3 

WP 6/6/14 1.72 0.09 3 

WP 7/4/14 2.19 0.08 3 

WP 8/1/14 1.73 0.14 3 

WP 9/6/14 2.53 0.07 3 

WP 10/7/14 2.91 0.57 3 

YB 5/3/14 1.54 0.26 2 

YB 6/6/14 1.42 0.10 3 

YB 7/4/14 4.20 0.13 3 

YB 8/2/14 2.12 0.17 3 

YB 9/7/14 3.83 0.04 3 

YB 10/7/14 3.00 0.37 3 

ZZ 6/25/14 0.59 0.02 3 

ZZ 7/8/14 0.52 0.03 3 

ZZ 8/4/14 0.85 0.04 3 

ZZ 9/9/14 1.61 0.04 3 

ZZ 10/11/14 0.40 NA 1 

 

B.2. Ciona intestinalis sample collection for genetic analysis 

During the final round of site visits in October of both years, C. intestinalis samples were 

collected from all sites where it was present. At sites where C. intestinalis was in low 

abundance, all individuals of a length greater than 1 cm were collected. The specimens were 

carefully removed from the settlement plates ensuring the tunics of the animals were not torn. 

Gently, any excess water that it was possible to squeeze out of the samples was removed. 

This was to minimize dilution of the 100% ethanol that the samples were placed in for 

storage. The samples in ethanol were kept in a cooler until they could be stored in a freezer 

upon return to the laboratory. At sites with high C. intestinalis abundance, roughly 30 

individuals greater than 1 cm in length were collected. Where possible, an even number of 

individuals were removed from multiple settlement plates with no specific selection 

preference for larger individuals, except for the greater than 1 cm criterion. The 2014 samples 

were sent to Dr Aibin Zhan, a collaborator at the Research Center for Eco-Environmental 
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Science at the Chinese Academy of Sciences in Beijing, China. Genetic sequencing has been 

carried out on the 2014 samples following the methods in Zhan et al. (2010). The 2015 

samples are awaiting transfer to China. 

Appendix C: Multivariate community analysis 

C.1. Introduction 

While the main focus of this study was C. intestinalis growth and has been modelled in 

isolation using the NLME model approach, there are other members of the biofouling 

community, native and introduced, that share (some of) the space. The of the most prominent 

species co-existing on the settlement plates with C. intestinalis were two other invasive 

tunicate species, the colonial species Botryllus schlosseri and Botrylloides violaceus. In 

addition to invasive tunicates, the invasive Membranipora membranacea was also relatively 

common, if not abundant. The remainder of the community was made up of other bryozoan 

species, hydroid species, Mytilus edulis, Balanus sp., and occasionally the odd small sea 

anemone, tubeworm. There were also times when a single unidentifiable species would occur 

on the plates. In 2014, at one site, VC, Styela clava was present, but it was not there again in 

2015. In 2015, although not included in the following analysis, a molgulid species was 

present in high abundance at Louisbourg.  

To conduct analysis that test the degree of similarity between the biological communities at 

each site during each measurement period, PRIMER v7 and PERMANOVA+ for PRIMER 

were used (Clarke and Gorley, 2015). This program also allows for the incorporation of the 

abiotic data to explain how much of the variation in the biological community is due to 

abiotic variables, and which ones are the most important. It is a program that relies 

predominantly on non-metric and permutation based forms of analysis and as such makes 

very little assumption about the form of the response or independent data. The permutation is 

carried out by randomly reordering the sample names the specified amount of time, while a 

test statistic is calculate for each random permutation. This creates a frequency distribution of 

the test statistics, which can then be used to determine the importance of the test statistic 

calculated according to the observed data. This is advantageous as there is no desire for the 

biological data to be normally distributed. The end result is a robust and widely applicable 

range of analyses for data exploration and testing. The basic premise behind the program is to 

create dis/similarity matrices between samples so that the similarity, or lack thereof, between 
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biological communities can be used for a range of ordinations and multivariate analyses. 

Then abiotic data can be used to interpret the relationships 

C.2. Methods 

The biological data used for all of the analyses is the species percentage cover results by 

sample (settlement plate within measurement period within site). I only included the data 

from the core sites - minus absent, as although this is a community analysis, I still want to 

explain how the abiotic data influences the biological community at sites where C. 

intestinalis was present. For each year, the abiotic data used were the same abiotic variable 

metrics from the preselection process in the NLME model development (section 2.7.2.). For 

the same reasons this was carried out before the NLME model, this is to reduce collinearity 

and eliminate redundant variables that would lead to overly complicated models. In 2014, the 

four abiotic variable metrics used were mean temperature, mean salinity, minimum pH, and 

minimum daily variance in acceleration (Table 3.6). In 2015, the four abiotic variable metrics 

used were mean temperature, maximum salinity, maximum pH, and maximum daily variance 

in acceleration (Table 3.9).  

The sparsity of species presence at the beginning of an observational study of growth over 

time such as this can cause some trouble PRIMER. The lack of species presence for two 

samples means that when they are compared using a Bray-Curtis similarity matrix the 

coefficient between the two samples is undefined, as joint absences are ignored. Or if there 

are only one or two species and low abundances of these species, the resultant similarities 

calculated in the matrix can vary wildly from 0 – 100 % similar based on very little 

difference. If the only difference between two plates is a single occurrence of a barnacle, the 

Bray-Curtis similarity matrix would define the two as 0% similar, despite the difference I 

reality being very marginal. The best way to account for both undefined coefficients and 

highly irregular similarity measures at the beginning of the observational study, a zero-

adjustment can be made to the Bray-Curtis equation quite simply (Clarke and Gorley, 2015). 

I used a modified similarity measure, adding a single dummy variable to the biological 

dataset before the Bray-Curtis similarity matrices were calculated to account for these 

aforementioned issues.  

The biological data and abiotic data were imported into PRIMER v7 as separate datasheets. 

No data transformation was implemented on the biological data. A resemblance matrix was 

created for the biological data using a Bray-Curtis similarity measure between each sample, 
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with a single dummy variable added at this point. This results in a matrix with a value of 

similarity between every single sample.  

A draftsman plot was used to visually assess relationships between the abiotic metrics, as a 

follow up to the preselection of least correlated metrics. The abiotic metrics did not require 

any transformation in any cases. A duplicate copy of the abiotic dataset was created, and then 

the ‘missing’ tool in PRIMER v7 was used on the duplicate to create an abiotic dataset 

without missing values. The ‘missing’ tool using an expectation-maximisation (EM) 

algorithm, a standard method for continues environmental variables, was used to replace 

missing values (Clarke and Gorley, 2015). This was required for the DistLM procedure, as it 

cannot be performed with missing data are present in the abiotic dataset. The BEST 

procedure has no such requirement, but I performed BEST analysis using both the dataset 

with missing values and the dataset without missing values to investigate the difference the 

‘missing’ procedure had. This allowed me to inspect the differences in the BEST results to 

judge how much of an impact using the ‘missing’ tool had and the implications for the 

DistLM results. On both datasets a normalization procedure was carried out to normalize the 

scale of the four different abiotic variable metrics. The final step here can be to create a 

resemblance matrix, much like the one created for the biological data, except a Euclidean 

distance measure is used to calculate the similarity between samples for environmental data 

rather than the Bray-Curtis. The results are not presented here, but comparing the biological 

and abiotic resemblance matrices is a basic exploratory analysis to inspect the degree that the 

matrices relate to one another. The following procedures described go a step further and 

interpret the proportion of importance that each abiotic metric has in explaining the biological 

patterns of similarity. 

C.2.1. BEST  

I used the BEST procedure in PRIMER v7 to match the biological patterns with the best 

explanatory abiotic metrics. There are two methods that can be implemented within BEST. 

The BVSTEP method is a stepwise approach of testing abiotic metrics and is useful if there 

are a lot of metrics. I used the BIOENV method as I was only including four abiotic metrics 

and this method tests all combinations of the metrics. The patterns in the biological 

resemblance matrices are compared to the patterns in the corresponding resemblance matrix 

of abiotic data, in this case either the normalized data with or without missing values.  I used 

the Kendall’s tau correlation coefficient method to assess the pattern similarities, as it is 
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appropriate for time-series data and also tends to provide a more conservative coefficient 

compared to Spearman or Pearson.  The number of permutation tests was set to 999. BEST 

allows for within-level factors to be assigned. I used the measurement period as a within-

level factor. This within-level factor allows the procedure to only compare samples within the 

same level of the factor, not with samples of other levels. This was a way of accounting the 

effect of time on the pattern of growth in the biological communities, allowing for the method 

to explain the amount of variation in the biological data within a given measurement period 

with the corresponding abiotic data for that measurement period. This does not take into 

account the covariance and correlation that is likely to occur within and between 

measurement periods. 

C.2.2. Distance-based linear modelling (DistLM) 

DistLM is a routine used to analyse and model relationship between a multivariate data cloud 

(a biological resemblance matrix and one or more abiotic predictor variables) using method 

called distance-based redundancy analysis (dbRDA) (Clarke and Gorley, 2015). This is 

similar to a multiple regression analysis and unlike the BEST procedure, the DistLM provides 

a modelled measure of the explained variance in these data, opposed to a simple correlation 

result from BEST. Like the BEST procedure, the biological resemblance matrix is used, 

while the normalized abiotic data that has had the missing data replaced via the EM algorithm 

is used as the predictor variable data. There are a number of different methods that can be 

used for the predictor variable selection. I used the ‘Best’ method, where all of the abiotic 

metric combinations are tested. AICc was used as the selection criterion for ranking the 

models while 999 permutations were used. A dbRDA plot was also created to visualise the 

biological data’s ordination in relation to the fitted models using the predictor abiotic metrics. 

DistLM does not have the capacity to incorporate a within-level factor. 

C.3. Results 

C.3.1. Cumulative biological data - 2014 

C.3.1.1. BEST 2014 

Table C.1: Best abiotic variable combinations at explaining the cumulative biological 

community data from 2014, with measurement period as a within-level factor in the 

BIOENV procedure. Dataset contains missing abiotic values. 

No. abiotic metrics Best metric combination Kendall’s tau (τ) 
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1 Mean salinity 0.23 

3 Mean sal + Min pH + Mean temp 0.21 

2 Mean salinity + Min pH 0.2 

2 Mean salinity + Mean temperature 0.19 

2 Mean salinity + Min var accel 0.17 

4 Mean sal + Min pH + Mean temp + Min var accel 0.16 

3 Mean sal + Min pH + Min var accel 0.16 

3 Mean sal + Mean temp + Min var accel 0.16 

1 Min pH 0.15 

2 Min pH + Mean temp 0.15 

 

The BIO-ENV procedure indicates that the patterns in the 2014 biological community, within 

each measurement period, are best correlated to mean salinity (τ = 0.23, Table C.1, p ≤ 0.001, 

Fig. C.1). The correlation coefficients were similar for combinations that included mean 

temperature and minimum pH with mean salinity (Table C.2). When missing data was 

replaced, the abiotic metrics with the highest correlation with the pattern in the biological 

community, within each measurement period, are mean temperature and mean salinity (τ = 

0.19, Table C.2, p ≤ 0.001, Fig. C.2). A variety of combinations including minimum pH, 

mean temperature and mean salinity all produce very similar correlation coefficients (Table 

C2.). 
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Figure C.1: The distribution of rho values from the 999 permutation tests carried out 

for the 2014 BIOENV procedure using the dataset with missing values. The rho value 

(dotted vertical line) of the best predictor (Mean salinity, Table C.1) variable and its 

significance are displayed. 

Table C.2: Best abiotic variables at explaining the cumulative biological community 

data from 2014 with measurement period as a factor within the BIOENV procedure. 

Dataset contains no missing abiotic values (replacement via EM algorithm). 

No. of abiotic metrics Best metric combination Kendall’s tau 

2 Mean sal + Mean temp 0.19 

3 Mean sal + Mean temp + Min pH 0.19 

1 Mean sal 0.19 

2 Mean sal + Min pH 0.19 

4 Mean sal + Mean temp + Min pH + Min var accel 0.17 

3 Mean sal + Min pH + Min var accel 0.16 

2 Mean sal + Min var accel 0.16 

3 Mean sal + Mean temp + Min var accel 0.16 

2 Mean temp + Min pH 0.12 

1 Min pH 0.11 
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Figure C.2: The distribution of rho values from the 999 permutation tests carried out 

for the 2014 BIOENV procedure using the dataset with no missing values (missing data 

replaced using EM algorithm). The rho value (dotted vertical line) of the best predictor 

variables (Mean salinity + Mean temp, Table C.2) and its significance are displayed. 

C.3.1.2. DistLM 2014 

Table C.3: Marginal test results from the DistLM analysis in 2014.    

Variable Sum of squares Pseudo-F P-value Proportion of variation explained 

Min pH 1.3    E+05 39.5 0.001 0.073353 

Min Var Accel 1.17  E+05 35.358 0.001 0.066168 

Mean Sal 1.33  E+05 40.354 0.001 0.074819 

Mean Temp 3.33  E+05 115.55 0.001 0.18803 

 

The marginal test results (the relationship between response variable and individual 

explanatory variables in isolation) from the DistLM analysis carried out on the 2014 data 

show that mean temperature explains the most variation in the biological community 

variation by far, at ~ 19 % (Table C.3). The other three metrics all explain ~ 7 % of the 

variation in the biological community variation, when considered in isolation. All four 

metrics are significant (P ≤ 0.001, Table C.3). The BEST method of testing which 

combination of abiotic metrics performed the best within the DistLM suggests that including 

all four of the abiotic metrics in the final model provides the best model fit (Table C.4). This 
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model explains 29 % of the variation in the biological community, while a series of models 

containing either two or three of the abiotic metrics provide similar measures of explained 

variance, but they ranked lower according to AICc comparison (Table C.4). 

Table C.4: Best models in 2014 from the DistLM procedure according to AICc ranking. 

AICc R
2 

No. abiotic metrics Selections 

3933.2 0.29 4 Mean temp + Mean sal + Min var accel + Min pH 

3935.8 0.28 3 Mean temp + Mean sal + Min var accel 

3942.3 0.27 3 Mean temp + Mean sal + Min pH 

3949.2 0.26 2 Mean temp + Mean sal 

3976.2 0.22 3 Mean temp + Min var accel + Min pH 

3977.9 0.22 2 Mean temp + Min var accel 

3980.3 0.22 3 Mean sal + Min var accel + Min pH 

3990.1 0.2 2 Mean temp + Min pH 

3993.2 0.19 1 Mean temp 

4014.7 0.16 2 Min var accel + Min pH 

 

 

 

Figure C.3: Ordination of the 2014 cumulative biological data according to distance-

based redundancy analysis using the abiotic data as predictor variables. A vector 
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overlay represents the distance and proportion of the abiotic predictor effects from the 

best model (Table C.3). 

C.3.2. Cumulative biological data - 2015 

C.3.2.1. BEST 2015 

The BEST procedure indicates that the patterns in the 2015 biological community, within 

each measurement period, are best correlated to mean temperature (τ = 0.14, Table C.5, p ≤ 

0.001, Fig. C.4). There was a noticeable drop-off in the correlation coefficients for the next 

best combinations that included maximum daily variance in acceleration, maximum salinity, 

and maximum pH (Table C.5).  

Table C.5: Best abiotic variable combinations at explaining the cumulative biological 

community data from 2015, with measurement period as a within-level factor in the 

BIOENV procedure. 

No. of abiotic metrics Best metric combination Kendall’s tau 

1 Mean temp 0.14 

2 Mean temp + Max var accel 0.09 

2 Mean temp + Max sal 0.08 

2 Mean temp + Max pH 0.08 

3 Mean temp + Max var accel + Max sal 0.07 

4 Mean temp + Max var accel + Max sal + Max pH 0.07 

1 Max sal 0.07 

3 Mean temp + Max var accel + Max pH 0.07 

3 Mean temp + Max sal + Max pH 0.06 

2 Max var accel + Max sal 0.05 
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Figure C.4: The distribution of rho values from the 999 permutation tests carried out 

for the 2015 BIOENV procedure using the dataset. The rho value (dotted vertical line) 

of the best predictor variable (Mean temp, Table C.5) and its significance are displayed. 

C.3.2.2. DistLM 2015 

Table C.6: Marginal test results from the DistLM analysis in 2015.    

Variable Sum of squares Pseudo-F P-value Proportion of variation explained 

Max Var Accel 6.32 E+04 20.505 0.001 0.026271 

Max salinity 1.66 E+05 56.257 0.001 0.06892 

Max pH 1.59 E+05 53.87 0.001 0.06619 

Mean Temp 8.95 E+05 450.14 0.001 0.37197 

 

The marginal test results from the DistLM analysis carried out on the 2015 data show that 

mean temperature explains the most variation in the biological community variation by far, at 

~ 37 % (Table C.6). Maximum salinity and maximum pH explain ~ 7 % of the variation in 

the biological community variation, while maximum daily variance in acceleration explains ~ 

3 %. All four metrics are significant (P ≤ 0.001, Table C.6). The BEST method used to test 

which combination of abiotic metrics performed the best within the DistLM suggests that 

including all four of the abiotic metrics in the final model provides the best model fit (Table 

C.7). This top model explains 44 % of the variation in the biological community, while the 

ordination of the biological community can be seen in Fig. C.5. A series of models containing 
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either two or three of the abiotic metrics provide similar measures of explained variance, but 

they ranked much lower according to AICc comparison (Table C.7). 

Table C.7: Best models in 2015 from the DistLM procedure according to AICc ranking. 

AICc R
2 

No. of abiotic metrics Selections 

5711.7 0.44 4 Mean temp + Max var accel + Max sal + Max pH 

5729.3 0.42 3 Mean temp + Max var accel + Max sal 

5744.4 0.41 3 Mean temp + Max var accel + Max pH 

5757.6 0.4 3 Mean temp + Max sal + Max pH 

5759.7 0.4 2 Mean temp + Max var accel 

5774.3 0.39 2 Mean temp + Max sal 

5774.6 0.39 2 Mean temp + Max pH 

5789.3 0.37 1 Mean temp 

6015.3 0.16 3 Max var accel + Max sal + Max pH 

6049.7 0.12 2 Max var accel + Max sal 

 

 

Figure C.5: Ordination of the 2015 cumulative biological data according to distance-

based redundancy analysis using the abiotic data as predictor variables. A vector 

overlay represents the distance and proportion of the abiotic predictor effects from the 

best model (Table C.5). 
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C.4. Discussion 

The results from the analyses conducted in PRIMER v7 and PERMANOVA+ describing the 

similarity in the patterns displayed in the biological community data and in the abiotic data, 

as well as which abiotic variables best explain these patterns, are very similar to the results 

obtained through the NLME modelling of the cumulative C. intestinalis abundance data. The 

single abiotic metric with the strongest relationship with the variation in the biological 

community in 2014 was mean salinity (Table C.1). In 2015, mean temperature had the 

strongest association with the variability in the biological community (Table C.5). In a 

similar fashion to the NLME modelling, the best predictors used to model the variation 

within the biological community data were composed of the metric from all four abiotic 

variables (Table C.7). In 2014, the best predictive model also included all metrics from the 

four abiotic metrics, but it should be noted that this was using an abiotic dataset that had 

missing data replaced. 
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Appendix D: Raw abiotic data plots 

 

Figure D.1: 5-minute interval data for each of the four abiotic variables measured in 

2014 and in 2015 at Camp Cove (CC). The 2014 plots are in the first column, while 2015 

plots are in the second. From the top row to the bottom, the abiotic variables are as 

follows: temperature; salinity; pH; and water motion. 
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Figure D.2: 5-minute interval data for each of the four abiotic variables measured in 

2014 and in 2015 at Cape Canso (ZZ). The 2014 plots are in the first column, while 2015 

plots are in the second. From the top row to the bottom, the abiotic variables are as 

follows: temperature; salinity; pH (2014 missing); and water motion. 

 

 

 



161 

 

 

 

 

Figure D.3: 5-minute interval data for each of the four abiotic variables measured in 

2014 and in 2015 at Dingwall (DW). The 2014 plots are in the first column, while 2015 

plots are in the second. From the top row to the bottom, the abiotic variables are as 

follows: temperature; salinity; pH; and water motion. 
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Figure D.4: 5-minute interval data for each of the four abiotic variables measured in 

2014 and in 2015 at Fall’s Point (FP). The 2014 plots are in the first column, while 2015 

plots are in the second. From the top row to the bottom, the abiotic variables are as 

follows: temperature; salinity; pH; and water motion. 
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Figure D.5: 5-minute interval data for each of the four abiotic variables measured in 

2015 at Ingomar (IN). From the top row to the bottom, the abiotic variables are as 

follows: temperature; salinity; pH; and water motion. 
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Figure D.6: 5-minute interval data for each of the four abiotic variables measured in 

2014 and in 2015 at Indian Point (IP). The 2014 plots are in the first column, while 2015 

plots are in the second. From the top row to the bottom, the abiotic variables are as 

follows: temperature; salinity; pH; and water motion.  
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Figure D.7: 5-minute interval data for each of the four abiotic variables measured in 

2015 at Louisbourg (LB). From the top row to the bottom, the abiotic variables are as 

follows: temperature; salinity; pH; and water motion. 
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Figure D.8: 5-minute interval data for each of the four abiotic variables measured in 

2014 and in 2015 at Little River (LR). The 2014 plots are in the first column, while 2015 

plots are in the second. From the top row to the bottom, the abiotic variables are as 

follows: temperature; salinity; pH; and water motion. 
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Figure D.9: 5-minute interval data for each of the four abiotic variables measured in 

2014 and in 2015 at Port Bickerton (PB). The 2014 plots are in the first column, while 

2015 plots are in the second. From the top row to the bottom, the abiotic variables are 

as follows: temperature; salinity; pH; and water motion. 
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Figure D.10: 5-minute interval data for each of the four abiotic variables measured in 

2014 and in 2015 at Petit-de-Grat (PG). The 2014 plots are in the first column, while 

2015 plots are in the second. From the top row to the bottom, the abiotic variables are 

as follows: temperature; salinity; pH; and water motion. 
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Figure D.11: 5-minute interval data for each of the four abiotic variables measured in 

2014 and in 2015 at St. Ann’s Bay (SA). The 2014 plots are in the first column, while 

2015 plots are in the second. From the top row to the bottom, the abiotic variables are 

as follows: temperature; salinity; pH; and water motion. 
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Figure D.12: 5-minute interval data for each of the four abiotic variables measured in 

2014 and in 2015 at Ship Harbour (SH). The 2014 plots are in the first column, while 

2015 plots are in the second. From the top row to the bottom, the abiotic variables are 

as follows: temperature; salinity; pH; and water motion. 
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Figure D.13: 5-minute interval data for each of the three abiotic variables measured in 

2015 at St Peters (SP). From the top row to the bottom, the abiotic variables are as 

follows: temperature; salinity; and water motion. 
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Figure D.14: 5-minute interval data for each of the four abiotic variables measured in 

2014 and in 2015 at Venus Cove (VC). The 2014 plots are in the first column, while 2015 

plots are in the second. From the top row to the bottom, the abiotic variables are as 

follows: temperature; salinity; pH; and water motion. 
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Figure D.15: 5-minute interval data for each of the four abiotic variables measured in 

2014 and in 2015 at Wedgeport (WP). The 2014 plots are in the first column, while 2015 

plots are in the second. From the top row to the bottom, the abiotic variables are as 

follows: temperature; salinity; pH; and water motion. 
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Figure D.16: 5-minute interval data for each of the four abiotic variables measured in 

2014 and in 2015 at Yarmouth Bar (YB). The 2014 plots are in the first column, while 

2015 plots are in the second. From the top row to the bottom, the abiotic variables are 

as follows: temperature; salinity; pH; and water motion. 

Appendix E: 2014 and 2015 combined NLME model 

E.1. Preselection of abiotic variables 

The four metrics remaining after the stepwise removal process was carried out on the 

pairwise-complete observations of the 2014 and the 2015 combined abiotic data are mean 

temperature, minimum salinity, maximum pH, and minimum variance in acceleration (Table 
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E.1). There were a number of very highly correlated (r > 0.9) metrics, seen in Table E.1. All 

of the very highly correlated metrics were found between correlations within the same abiotic 

variable, e.g. mean and maximum temperature (r = 0.94).  

Table E.1: Stepwise removal of a single abiotic variable metric from the most highly 

correlated pair using the combined 2014 and 2015 abiotic data. The pair of metrics most 

correlated at each step is highlighted. The light grey shaded metric was kept (Keep) 

while the metric shaded with dark grey was removed (Rem.) from the process. There 

was a selection rule to always have one metric from each variable remaining. Only 

pairwise complete observations were used in the abiotic metric correlations. 

Variable Metric 
Step 

1 

Step 

2 

Step 

3 

Step 

4 

Step 

5 

Step 

6 

Step 

7 

Step 

8* 

Step 

9 

Temp. 

Mean Keep   Keep      

Minimum    Rem.      

Maximum Rem.         

Salinity 

Mean  Rem.        

Minimum  Keep    Keep Keep Keep Keep 

Maximum      Rem.    

pH 

Mean     Rem.     

Minimum         Rem. 

Maximum     Keep     

Water 

Motion 

Accel. 

Variance   Rem.       

Minimum       Rem.   

Maximum   Keep     Rem.  

Pearson’s r 0.94 0.91 0.91 0.9 0.88 0.58 -0.55 -0.53 0.47 

 

As the highly collinear metrics were reduced, some moderate correlations were found 

between metrics from two different abiotic variables, e.g. Step 7 (Table E.1): minimum 

salinity and minimum variance in acceleration (r = -0.55). If the selection rule requiring one 

metric from each abiotic variable be present in the final four was not in place, all correlations 

of r > 0.5 would have been removed. In one case, in the last removal step neither of the most 

correlated pair could be removed, as they were the last representative for their respective 

abiotic variables. The second most correlated pair was used instead (Step 9, Table E.1). I was 

unable to achieve a full top-down model that converged with the four final metrics from 

Table E.1, so instead of mean temperature, I used minimum temperature, as this resulted in 
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model convergence. I used both mean and minimum temperature in the bottom-up model 

fitting (Table E.2). 

E.2. Bottom-up and top-down candidate sets 

The ‘best’ bottom-up model (BBU) contains minimum temperature and maximum daily 

variance in acceleration in the Days50 and Lag parameters, while it has mean temperature, 

minimum salinity and maximum variance in acceleration in the MaxPop parameter (Table 

E.2). Its Akaike weight (wi) is 0.54 out of the total (N = 32) set of compared models 

(candidate set) for the BU approach (Table E.2). Only seven models in the BU candidate set 

had a Δi  of < 10. The second best model had a Δi  of ~ 2 compared to the BBU (Table E.2). 

The evidence ratio between these top two models is 2.8, meaning that the top model is almost 

three times as likely to be the best model of the candidate set, based on these data.  

The TD candidate set appears to have provided a much better model than those fit by the BU 

approach (Table E.2 & E.3), with a large Δi ~ 20 between the BBU and ‘best’ top-down 

model (BTD). While not in the region of > 0.9 suggested by (Burnham and Anderson, 2003) 

as describing a clearly strongest model, the wi of 0.59 is the largest of any ‘best’ model from 

any candidate set of any year. There is only one other model that is within the Δi of 2 (Table 

E.3). The abiotic metrics contained within the model parameters are like the global model 

(GM), except for the exclusion of minimum salinity from MaxPop and Lag. The second BTD 

model, with a wi of 0.36 and an evidence ratio compared to the BTD of 1.6, is almost the GM, 

only excluding maximum pH from Lag. 

There is less uncertainty in the best model selection in both BU and TD candidate sets for the 

combined yearly data when compared to either 2014 or 2015 in isolation. This is exemplified 

by the top two models in the TD combined candidate set having a cumulative wi of 0.95, 

while the top three models (Δi  of < 4) in the BU candidate set have a cumulative wi  of 0.85 

The models do have a relatively high number of parameters, represented by all of the abiotic 

variables. This suggests that each abiotic variable contributes valuable information to the 

likelihood of the best models, without over parametrizing.
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Table E.2: The seven best models (total no. models = 32) from the bottom-up model approach (combined), ranked by lowest AICc value. Each model 

parameter (MaxPop, D50, and Lag) could have all four of the abiotic metrics in it in any given model. The abiotic metrics in the table have been 

assigned shorthand names as follows: Mean temp. = mean temperature; Temp = minimum temperature; Sal = minimum salinity; pH = maximum pH; 

and Accel = maximum variance in acceleration. K = no. model parameters. 

Model 

rank 
K AICc Δi 

Model 

Likelihood 

Model 

wi 

Cumulative 

wi 

Maximum population 

(MaxPop) 

Days50 

(D50) 

Lag phase 

(Lag) 

1 13 7764.23 0 1 0.54 0.54 
Mean 

Temp. 
Sal Accel  Temp  Accel  Temp  

 
Accel  

2 14 7766.29 2.06 0.36 0.19 0.73 
Mean 

Temp. 
Sal Accel  Temp  Accel pH Temp  

 
Accel  

3 15 7767.26 3.04 0.22 0.12 0.85 
Mean 

Temp. 
Sal Accel  Temp  Accel pH 

 
 

  

4 17 7768.5 4.28 0.12 0.06 0.91 
Mean 

Temp. Sal Accel pH Temp  Accel pH Temp Sal Accel pH 

5 16 7769.2 4.97 0.08 0.04 0.96 
Mean 

Temp. Sal Accel pH Temp  Accel pH Temp Sal Accel  

6 12 7770.36 6.13 0.05 0.03 0.98 
Mean 

Temp. Sal Accel  
 

 Accel  Temp  

 
Accel  

7 14 7773.23 9 0.01 0.01 0.99 
 

Sal Accel pH Temp  Accel pH Temp  

 
Accel  
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Table E.3: The six best models (total no. models = 29) from the top-down model approach (combined), ranked by lowest AICc value. Each model 

parameter (MaxPop, D50, and Lag) could have all four of the abiotic metrics in it in any given model. The abiotic metrics in the table have been 

assigned shorthand names as follows: Temp = minimum temperature; Sal = minimum salinity; pH = maximum pH; and Accel = maximum variance in 

acceleration. K = no. model parameters. 

Model 

rank 
K AICc Δi 

Model 

Likelihood 

Model 

wi 

Cumulative 

wi 

Maximum population 

(MaxPop) 

Days 50 

(D50) 

Lag phase 

(Lag) 

1 16 7745.00 0.00 1.00 0.59 0.59 Temp 
 

Accel pH Temp Sal Accel pH Temp 
 

Accel pH 

2 17 7746.01 1.01 0.60 0.36 0.95 Temp Sal Accel pH Temp Sal Accel pH Temp Sal Accel  

3 16 7751.37 6.37 0.04 0.02 0.97 Temp Sal 
 

pH Temp Sal Accel pH Temp Sal 
 

pH 

4 17 7753.25 8.26 0.02 0.01 0.98 Temp Sal Accel pH Temp Sal Accel pH 
 

Sal Accel pH 

5 17 7754.48 9.49 0.01 0.01 0.99 Temp Sal Accel pH Temp Sal Accel pH Temp 
 

Accel pH 

6 16 7754.54 9.54 0.01 0.01 0.99 Temp 
 

Accel pH Temp 
 

Accel pH Temp Sal Accel pH 
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E.3. Observed values vs. fitted values 

The scale of missing data in 2014 can be seen clearly in the left panel of Fig. E.1. Due to pH, 

salinity, water flow and temperature being included in the development of the bottom-up 

candidate set, any measurement period with missing data had to be removed. The full-fit of 

the best bottom-up model (BBU) deviates from the observed average C. intestinalis growth, 

to a greater or lesser extent depending on the site and year (Fig. E.1). As is consistent 

throughout all of the models, inter-site variation of species-wide effects contribution to the fit 

is evident (Fig. E.1). There is also intra-site variation in species-wide effects between the two 

years. Two sites, VC and SH are fit very well by the species-wide effects in both years, if 

slightly less so for VC in 2015. DW is a prime example of a poor full-fit, due to the vastly 

different patterns of growth at DW in the two years. WP is similarly a poor fit as it was 

another site to have very different observed values of C. intestinalis between the years. SH is 

a very good fit in both years, despite having markedly higher growth in 2015. This could be 

an indication that the change in C. intestinalis growth at DW and WP between the years is 

largely due to factors not accounted for in this project, but the difference in growth at SH 

between the years is largely due to C. intestinalis responding consistently to variable abiotic 

conditions. ZZ, PG, and FP (except one measurement period of data) have no data to work 

with in 2014. The rate of growth and maximum population size at the end of the monitoring 

period is over predicted at ZZ by the species-wide effect, while rate of growth is under 

predicted at PG for 2015. The initial rate of growth is poorly fit for FP in 2015, but it then 

increases so that the final maximum population fit is quite accurate. PG on the other hand has 

a much lower final maximum population fit by the species-wide effects than was observed. 

YB, IP, and PB are quite poorly fit by the species-wide effects, while CC is very poorly fit by 

the species-wide effects.  

The combined years best top-down model (BTD) full-fit deviates from the observed average 

C. intestinalis growth, to a greater or lesser extent depending on the given site and year (Fig. 

E.2). The species-wide effects contribute more so at some sites like VC and IP, while site-

level effects clearly improve the fit at sites such as CC and WP. The species-wide effects fit 

worsen at some site when compared to the BBU, such as SH, while other improve, like IP.  



180 

 

 

Figure E.1: Red line and circle point markers represent the observed values. Dashed 

black line and circle markers represent the fitted values. The black dotted line and 

triangle markers represent the species-wide effect only fitted values. 
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Figure E.2: Red line and circle point markers represent the observed values. Dashed 

black line and circle markers represent the fitted values. The black dotted line and 

triangle markers represent the species-wide effect only fitted values. 

Appendix F: Residual plots 

F.1. Best temperature-only model (BTO) 2014 
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Figure F.1: BTO 2014 residual boxplots by site, ordered alphabetically. The full-model 

residuals are displayed in the upper plot, while the species-wide effects residuals in 

isolation are displayed in the lower plot. 

F.2. Best bottom-up model (BBU) 2015 
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Figure F.2: BBU 2015 residual boxplots by site, ordered alphabetically. The full-model 

residuals are displayed in the upper plot, while the species-wide effects residuals in 

isolation are displayed in the lower plot. 

F.3. Best temperature-only model (BTO) 2015 
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Figure F.3: BTO 2015 residual boxplots by site, ordered alphabetically. The full-model 

residuals are displayed in the upper plot, while the species-wide effects residuals in 

isolation are displayed in the lower plot. 

F.4. Best bottom-up model (BBU) combined  
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Figure F.4: BBU combined residual boxplots by site, ordered alphabetically. The full-

model residuals are displayed in the upper plot, while the species-wide effects residuals 

in isolation are displayed in the lower plot. 

F.5. Best top-down model (BTD) combined 
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Figure F.5: BTD combined residual boxplots by site, ordered alphabetically. The full-

model residuals are displayed in the upper plot, while the species-wide effects residuals 

in isolation are displayed in the lower plot. 

F.6. Second best top-down model (SBTD) combined 
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Figure F.6: SBTD combined residual boxplots by site, ordered alphabetically. The full-

model residuals are displayed in the upper plot, while the species-wide effects residuals 

in isolation are displayed in the lower plot. 

Appendix G: Settlement collector images 
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Figure G.1: Representative settlement plate images for each measurement period in 

both years for the expanded sites, showing the different biofouling communities present 

at that point in time. Ranked from highest 2015 mean C. intestinalis abundance. 
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Appendix H: ImageJ macro and R codes 

H.1. ImageJ 

H.1.1. Image scaling  

Open ImageJ  >  Process  >  Batch  >  Macro… 

Choose Input Folder with all images that you desire the process to be implemented on. 

Choose Output, a new folder where the resultant files will appear. 

Insert code below into the large empty section: 

run("Scale...", "x=- y=- width=3000 height=3000 interpolation=Bicubic average create 

title=create"); 

 

Press ‘Process’. 

H.1.2. Custom grid 

Open ImageJ  >  Plugins  >  Macros  >  Record… 

Make sure ‘Record:’ is set to ‘Macro’. It should be as a default. 

Create a custom name in the ‘Name:’ section, i.e. “Custom_Grid.ijm”.  

Insert the code below (in red text) into the recorder: 

nLines = 9; 

   color = "green"; 

   if (nImages==0) 

      newImage("Untitled", "8-bit black", 512, 512, 1); 

   run("Remove Overlay"); 

   width = getWidth; 

   height = getHeight; 

   tileWidth = width/(nLines+1); 

   tileHeight = tileWidth; 

   xoff=tileWidth; 

   while (xoff<width) { // draw vertical lines 

      makeLine(xoff, 0, xoff, height); 

      run("Add Selection...", "stroke="+color); 

      xoff += tileWidth; 

   } 

   yoff=tileHeight; 

   while (yoff<height) { // draw horizonal lines 

      makeLine(0, yoff, width, yoff); 
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      run("Add Selection...", "stroke="+color); 

      yoff += tileHeight; 

   } 

   run("Select None"); 

 

Press ‘Create’ 

A new panel will appear. You can either run the macro from there, or save the macro to a 

specified folder and then install it as a permanent feature by following these steps. 

Open ImageJ  >  Plugins  >  Macros  >  Install…  

Choose the macro you saved in your specified folder. 

Now when you open ‘Macros’ in ImageJ, the custom macro is an option to select. 

H.2. R Code 

H.2.1. Residual boxplots 

H.2.1.1. Full-model residuals 

plot(ExampleModel.nlme, SiteCode~resid(., type='pearson'), 

     abline=0, aspect = 0.7, 

     xlab = list( 

       "Standardized residuals", cex = 1.3), 

     ylab = list( 

       "Site", cex = 1.3), 

     scales = list( 

       y=list( 

         cex=0.9, font=2, tck =c(-1,-1)), 

       x=list( 

         cex=0.9, tck =c(1,-1), font=1))) 

 

H.2.1.2. Species-wide effects residuals 

plot(ExampleModel.nlme, SiteCode~resid(., type='pearson', level=0), 

     abline=0, aspect = 0.7, 

     xlab = list( 

       "Standardized residuals", cex = 1.3), 

     ylab = list( 

       "Site", cex = 1.3), 

     scales = list( 

       y=list( 

         cex=0.9, font=2, tck =c(-1,-1)), 

       x=list( 

         cex=0.9, tck =c(1,-1), font=1))) 
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H.2.2. Observed values vs. fitted values 

# Create sub-dataset that matches that used in the given model  

 

datasub <- ExampleData 

 

# requires datasub to be the appropriate subset used for the ExampleMode.nlme 

 

# Create copy of datasub to avoid altering original 

 

datasubcopy <- datasub 

 

# Add new column "OF" (Obsered/Fitted) and fill in with "observed" values corresponding to 

#the observed "PercentCiona" values  

 

datasubcopy$OF <- "observed" 

 

# Assign the species-wide effects fitted values a name  

 

fixfittedvals <- fitted(ExampleModel.nlme, level = 0) 

 

# Assign a new datasubcopy that will be for the fitted values from ExampleModel.nlme 

 

datasubwFR <- datasubcopy 

 

# Replace the observed "PercentCiona" values with ExampleModel.nlme species-wide effects 

# fitted values 

 

datasubwFR$PercentCiona <- fixfittedvals 

 

# Add new column "FR" (Fixed/Random) and fill in with "Fixed" values corresponding to the 

Fixed-effect fitted "PercentCiona" values  

 

datasubwFR$FR <- "Fixed" 

 

# Assign a new datasubcopy that will be for the site-level effects fitted values from                         

# ExampleModel.nlme 

 

datasubwRF <- datasubcopy 

 

# Assign the fixed-effect fitted values a name  

 

Ranfittedvals <- fitted(ExampleModel.nlme, level = 1) 

 

# Replace the observed "PercentCiona" values ExampleModel.nlme species-wide effects # 

fitted values 

 

datasubwRF$PercentCiona <- Ranfittedvals 
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# Add new column "FR" (Fixed/Random) and fill in with "Random" values corresponding to 

the Random-effect fitted "PercentCiona" values  

 

datasubwRF$FR <- "Random" 

 

# Merge the two versions of datasubcopy that have the fitted and observed values. 

 

# Add new column "OF" (Obsered/Fitted) and fill in with "observed" values corresponding to 

the observed "PercentCiona" values  

datasubcopy$FR <- "observed" 

 

datasubcomb <- rbindlist(list(datasubwFR,datasubwRF, datasubcopy)) 

 

####################################################################### 

#     Plot the species-wide effects and site-level effects fitted values on the same plot     # 

####################################################################### 

 

xyplot(PercentCiona~Daysafterdeploy |factor(SiteCode, levels(reorder(SiteCode, 

MeanPercentCiona2015))), 

       groups = FR, 

       layout = c(1,11), 

       xlab = list( 

         "Time (Day after deployment)", cex = 1.35), 

       ylab = list( 

         "Site", cex = 1.35), 

       ylab.right = list( 

         label=substitute(paste(italic('C. intestinalis'), " relative abundance (%)")), cex = 1.35), 

       data = datasubcomb, 

       type = c("a","p"), pch = c(2,1,1), cex = c(.6,.9, .8), col = c("black", "red", "black"), lty = 

c("dotted","solid","dashed"), lwd = c(2.75, 2, 2), 

       scales = list( 

         y=list( 

           at=seq(0,100,50),labels = c("0", "50", "100"), cex=0.85, font=2, tck =c(0,1), 

alternating = c(2, 0)), 

         x=list( 

           at=seq(30,150,60), cex=.85, tck =c(1,-1), alternating = c(1, 1), font=1)), 

       xlim = c(20, 155), 

       strip = FALSE, 

       strip.left = strip.custom(horizontal = FALSE, bg = 'white'), 

       par.strip.text=list(cex=1, font=2)) 

 

H.2.3. Confidence and prediction intervals 

# 10-repeated 10-fold cross-validation 

runs = 10 

nfold = 10 

results = c() 

 

for (run in 1:runs) 

{ 
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  split = sample(rep(1:nfold, length = n), n) # Split n in 10 sets, n = length of dataset 

  resample = lapply(1:nfold, function(x,spl) list(cal=which(spl!=x), val=which(spl==x)), 

spl=split) # Create values for 10 cal/val sets. 

   

  # Here we loop through all cal/val combinations 

  for(fold in 1:nfold) 

  { 

    # Create the cal/val data sets for the current 'fold' 

    cal = Data_Edit[resample[[fold]]$cal,] 

    val  = Data_Edit[resample[[fold]]$val,] 

     

    # Fit a model with the current calibration data set 

    model = ExamplModel.nlme  

     

    # Calculate MEF and put it in results 

    observations = val$PercentCiona 

    predictions = predict(model, newdata=val) 

     

     

     

    MAE = mae(observations, predictions)  

    #RMSE = rmse(observations, predictions) 

    #MEF = MEF(predictions, observations) 

    #cor = cor(predictions, observations, method = "spearman") 

    results = c(results, MAE) # This attaches 'MAE' to any previous content of 'results' 

    #results = c(results, RMSE) # This attaches 'RMSE' to any previous content of 'results' 

    #results = c(results, MEF) # This attaches 'MEF' to any previous content of 'results' 

    #results = c(results, cor) # This attaches 'cor' to any previous content of 'results' 

  } 

} 

 

Cross_Val_Results <- mean(results) 


