
Taylor J. Smith

Teaching Portfolio

1 Biographical Sketch 2

2 Teaching Philosophy 2

3 Teaching Responsibilities 4
3.1 Course Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Instructional Apprenticeships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Teaching Assistantships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 Curriculum Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.5 Relevant Committee Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Evidence of Teaching Effectiveness 6
4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 Honours and Awards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.3 Representative Feedback from Students . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.4 Representative Feedback from Colleagues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Professional Development 7
5.1 Professional Development in University Teaching and Learning Program, Queen’s University 7
5.2 Fundamentals of University Teaching Program, University of Waterloo . . . . . . . . . . . . . 7

A Course Descriptions 9

B Course Evaluations (Past 12 Months) 11

C Recent Course Outline 17

D Sample Course Materials 20

E Sample Scholarship Materials 29

Current as of
September 15, 2022



Taylor J. Smith Teaching Portfolio

1 Biographical Sketch

I am an assistant professor in the Department of Computer Science at St. Francis Xavier University. Gener-
ally, I teach and develop courses in theoretical computer science covering subjects such as formal languages,
automata theory, computability and complexity theory, formal logic, and algorithm analysis/design. I have
also taught related subjects, such as discrete mathematics and matrix computation.

As the instructor of undergraduate and graduate courses in each of the above topics, I have had opportuni-
ties not only to impart my own style onto regular course offerings, but also to completely revise and refresh
infrequently-offered courses and, in some cases, to develop entirely new courses from the ground up. I have
produced hundreds of pages of open-access curriculum materials covering the spectrum of theoretical com-
puter science, and my materials are used at multiple universities. In addition to the standard curriculum, I
always welcome opportunities to guide independent study/reading courses for motivated students.

Throughout my career, my teaching abilities have been recognized both by students and by the broader
university community. My courses are regularly at or near registration capacity, which is a trend that
runs counter to typical levels of enrolment in theoretical courses. I have received teaching evaluation scores
consistently higher than both the department and university averages, and I have earned multiple teaching
awards, including the university-wide Queen’s Teaching Assistant/Teaching Fellow Excellence Award.

2 Teaching Philosophy

...the best theory is inspired by practice and the best practice is inspired by theory.

— Donald Knuth
Theory and Practice (1991)

Teaching theoretical computer science presents a unique challenge: typically, at the level of instruction when
most students are introduced to theory, all of their previous courses have been application-focused and,
hence, directly applicable to what they expect to see when they enter the workplace. In a theoretical com-
puter science course, then, where the concepts taught cannot be immediately connected to any real-world
application, it is not unusual to hear the question “why do we care about this?” Indeed, having taught and
assisted with courses that span the spectrum of theoretical computer science—algorithms, computability
and complexity, data structures, discrete mathematics, formal languages and automata—this one question
has been a universal constant. Students want to know why they are investing their time and energy into
learning something that is too often presented in the abstract.

My attempt to guide students toward finding an answer to this question is best summarized by the above
quote by Donald Knuth: I use practice to inspire theory and, in turn, I strive to have students’ future
practices inspired by this theory. As hard as some theorists may work to keep their field “pure”, it is an
undeniable truth that theory and practice are inextricably intertwined components of computer science.
Rather than resisting this association, I propose that we embrace it: teach students from the very beginning
about the deep and meaningful connections between theoretical computer science and other areas, so that
they have a better understanding not only of theory, but of the field as a whole. My goal as an educator is
to bring meaning to theory, and I make progress toward that goal by drawing three connections: between
theory and application, between theory and the bigger picture, and between students and their education.

Connecting Theory to Application. One pitfall of testing a student’s understanding of theory lies in
asking “so what?” questions. These questions are often designed to test rote knowledge of definitions or the-
orems, and while answering such questions provides an extrinsic motivation for, say, students preparing to
write an exam, there is no intrinsic motivation for those same students to care about the solution they obtain.
I aim to design problems that require students to apply concepts taught in the classroom to a situation found
in the real world. Often, I select applications I have not discussed in the classroom, leaving students to dis-
cover the link on their own and solidifying in their minds both the idea itself and how they might use the idea.

2



Taylor J. Smith Teaching Portfolio

In terms of course design, I tend to allocate a higher percentage of marks to assignments and projects rather
than to time-constrained assessments such as exams. I believe exams have their merits, but the fact that
most exams are held at a point in the term when students no longer have an opportunity to improve their
understanding severely limits the use of an exam as a learning tool. Placing a greater weight on assignments
and projects encourages students to put more work into crafting a submission they can be proud of while, in
the process, gaining a better understanding of how the material they learned can be applied to novel problems.

Connecting Theory to the Bigger Picture. When I teach concepts in theoretical computer science,
I make an effort to connect the concept to its broader context. I often do so by outlining the history and
development of the concept, or by highlighting a few areas of application where this concept may appear.
For example, when I introduce students to Greibach normal form, I do not restrict the lesson simply to
talking about context-free grammars. Rather, I introduce students to Sheila Greibach, how she developed
her idea, and why compiler designers care about transforming grammars into the form bearing her name.

I include this broader context within my lectures not only to pique interest in otherwise dry topics, but also
to imbue within students the sense that these topics exist outside of the realm of mathematics. Framing
the introduction of a lesson through the lens of the broader arts and sciences—through biography, history,
chemistry, or otherwise—both provides for a gentler introduction to an abstract concept and allows students
to emerge from a course as more well-rounded academics.

Providing a historical perspective within lectures also comes with the added benefit of introducing students
to the people behind the ideas, thus revealing that these ideas were not simply gifted unto us centuries ago
by brilliant minds from atop the ivory tower. I feel that this approach encourages students to attempt their
own discoveries, as the barrier to entry vanishes once students realize that the people who developed the very
ideas being taught today were once just like them. This approach was influenced by texts such as Rosen’s
Discrete Mathematics and Its Applications, which includes biographical sidebars of mathematical figures.

Connecting Students to Their Education. When I was an undergraduate student, the theoretical com-
puter science course in which I was enrolled was taught through PowerPoint. While this may work for some
subjects, I staunchly believe that PowerPoint (and, indeed, any static presentation format) has no place in
theoretical computer science. At its core, theoretical computer science is applied mathematics, and so much
like a course in mathematics, instructors should employ a fluid, discovery-based approach to teaching theory.

To promote interest in a course, I invite students to participate in the development and presentation of course
material during each lecture, rather than flicking through slides and beaming contextless information at the
class. I write lecture material on the chalkboard, giving me the ability to amend and add to my planned
notes as students ask questions, extend ideas, and even offer corrections—after all, no instructor is infallible!
For the same reason, I engage students in worked examples, solving problems as a group in real time and
highlighting potential mistakes as they arise. To accommodate different learning styles, I use props in the
classroom. For example, I have shared a collection of different-sided dice prior to a lecture on sample spaces
and outcomes—students especially enjoyed rolling the d120—and solicited volunteers to flip coins in order to
build a skip list interactively as a class. The guided discovery process facilitated by students handling props
establishes a foundation upon which I can build a memorable lecture. My approach incorporates a dimension
of flexibility into lectures, allowing me to mould the content to the students rather than the other way around.

I believe my approaches have a positive effect on student learning, as evidenced by both the numeric ratings
and the student comments I have received. Such feedback provides reassurance that I am achieving my
goal of bringing meaning to theory. That being said, I still seek to improve various aspects of my teaching
style. Currently, my priority is to identify areas where I can increase the use of technology in my lectures to
facilitate active learning, including using software tools to illustrate concepts (e.g., constructing automata
with JFLAP) or leading live-coding sessions during algorithm-focused lectures. In past courses, I have
introduced students to the LATEX document preparation system via an interactive workshop, and this was
generally received well. I also plan to incorporate more small group activities and student-led lessons in my
lectures, taking advantage of the often-smaller class sizes in theory courses to build a sense of community.

3



Taylor J. Smith Teaching Portfolio

3 Teaching Responsibilities

The following lists outline all courses for which I had some kind of teaching responsibility, including as an
instructor, as an instructional apprentice (IA) or teaching assistant (TA), or as a curriculum developer.
Appendix A contains course descriptions for all courses listed here. Appendices C and D contain examples
of materials from a recent course I have taught.

All courses from Fall 2021 to present were held at St. Francis Xavier University.
All courses from Fall 2017 to Winter 2021 were held at Queen’s University.
All courses from Fall 2015 to Spring 2017 were held at the University of Waterloo.

3.1 Course Instruction

Primary responsibilities include planning and delivering lectures, designing in-class activities, writing lecture
notes, creating assignments and exams, coordinating teaching assistants, holding office hours, and handling
administrative matters.

Fall 2022 CSCI 356: Theory of Computing
7 students, 1 instructor, 3 lecture hours per week

Fall 2022 CSCI 541: Theory of Computing
34 students, 1 instructor, 1 TA, 3 lecture hours per week

Fall 2022 CSCI 550: Approximation Algorithms
32 students, 1 instructor, 1 TA, 3 lecture hours per week

Winter 2022 CSCI 355: Algorithm Design and Analysis
22 students, 1 instructor, 1 TA, 3 lecture hours per week

Winter 2022 CSCI 544: Computational Logic
30 students, 1 instructor, 1 TA, 3 lecture hours per week.

Winter 2022 CSCI 554: Matrix Computation
27 students, 1 instructor, 1 TA, 3 lecture hours per week

Fall 2021 CSCI 356: Theory of Computing
35 students, 1 instructor, 1 TA, 3 lecture hours per week

Fall 2021 CSCI 541: Theory of Computing
18 students, 1 instructor, 1 TA, 3 lecture hours per week

Fall 2021 CSCI 550: Approximation Algorithms (online)
22 students, 1 instructor, 1 TA, 3 synchronous meeting hours per week

Winter 2019 CISC 203: Discrete Mathematics for Computing II
49 students, 1 instructor, 2 TAs, 3 lecture hours per week

Spring 2017 CS 240: Data Structures and Data Management
340 students, 3 instructors, 1 IA, 7 TAs, 3 lecture hours per week

3.2 Instructional Apprenticeships

At the University of Waterloo, the role of instructional apprentice recognizes the advanced skills of some
graduate students. IAs are selected by instructors on the basis of TA excellence. Primary responsibilities
include leading tutorials, coordinating teaching assistants, and creating solution sets and marking schemes.

Fall 2016 CS 234: Data Types and Structures

Spring 2016 CS 240: Data Structures and Data Management
121 students, 2 sections, 1 tutorial hour per week per section

4



Taylor J. Smith Teaching Portfolio

3.3 Teaching Assistantships

Primary responsibilities include holding office hours, marking assignments and exams, and proctoring assess-
ments. In recent terms, responsibilities have also included coordinating junior teaching assistants, creating
solution sets and marking schemes, and adapting content for an online environment.

Winter 2021 CISC/CMPE 223: Software Specifications (online)

Fall 2020 CISC 203: Discrete Mathematics for Computing II (online)

Winter 2020 CISC/CMPE 223: Software Specifications (partially online)

Fall 2019 CISC 203: Discrete Mathematics for Computing II

Fall 2018 CISC 462: Computability and Complexity

Winter 2018 CISC/CMPE 223: Software Specifications

Fall 2017 CISC 462: Computability and Complexity

Winter 2017 CS 462/662: Formal Languages and Parsing

Winter 2016 CS 240: Data Structures and Data Management

Fall 2015 CS 234: Data Types and Structures

3.4 Curriculum Development

Computational – Wrote ∼75 pages of lecture notes, structured with a roughly even split between
Logic propositional and predicate logic. Both propositional and predicate logic topics follow

the same progression: syntax/semantics, semantic tableaux, deductive systems, and
resolution. This intentional mirroring allows students in the second half of the course
to build on what they learn in the first half, with a view to future logical extensions.

Discrete – Wrote ∼110 pages of lecture notes covering standard undergraduate topics including
Mathematics combinatorics, discrete probability, recurrence relations, graph theory, and trees. My

notes contain illustrations, complete proofs, and fully worked examples. The notes
continue to be used by faculty at Queen’s University in current offerings of the course.

Theory of – Produced ∼110 pages of comprehensive, detailed, and heavily illustrated lecture notes
Computation suitable for both undergraduate and graduate audiences. The undergraduate version

of the notes discusses standard material on regular/context-free languages, Turing
machines, decidability/reducibility, and time/space complexity. The expanded
graduate version of the notes leaves elementary proofs as exercises and redirects the
focus to advanced material on lesser-known theoretical topics. My notes are currently
being revised to include additional graduate material, to connect existing content to
applications, and to incorporate activities involving automata-theoretic software tools.

Other Topics – Developed ∼75 pages of lecture notes for a graduate course on approximation algorithms.
– Developed ∼65 pages of lecture notes with self-contained, commented code examples
indexed to the notes for a graduate course on matrix computation.

3.5 Relevant Committee Service

2016 – 2017 Graduate Studies Committee, Faculty of Mathematics, University of Waterloo
– Primarily tasked with reviewing/approving new courses and changes to graduate
programs offered by the Departments of Pure Mathematics, Applied Mathematics,
Statistics, Combinatorics and Optimization, and the School of Computer Science.

2014 – 2015 Curriculum Committee, Department of Computer Science, University of Western Ontario
– Primarily tasked with undertaking a curriculum mapping process to align undergraduate
course learning outcomes with CIPS CSAC graduate attributes.

5



Taylor J. Smith Teaching Portfolio

4 Evidence of Teaching Effectiveness

4.1 Summary

The following table summarizes my “effectiveness rating” as an instructor for past courses. Department
means are provided when available. Additional data from the past 12 months are provided in Appendix B.

Term Course Effectiveness Rating Department Mean
Winter 2022 CSCI 355 4.50/5.00 4.30/5.00
Winter 2022 CSCI 544 4.83/5.00 4.30/5.00
Winter 2022 CSCI 554 4.87/5.00 4.30/5.00
Fall 2021 CSCI 356 4.38/5.00 4.15/5.00
Fall 2021 CSCI 541 5.00/5.00 4.15/5.00
Fall 2021 CSCI 550 4.40/5.00 4.15/5.00
Winter 2019 CISC 203 4.7/5.0 3.7/5.0
Spring 2017 CS 240 4.3/5.0 —

4.2 Honours and Awards

2020 TA/TF Excellence Award, Queen’s Society of Graduate & Professional Students (SGPS)
– University-level award given to recognize the outstanding contributions of a teaching
assistant/teaching fellow to the SGPS and Queen’s community. One recipient per year.

– First student from the School of Computing to receive this award.

2018 Excellence in Teaching Assistance Award, School of Computing, Queen’s University
– Department-level award given to a teaching assistant in a computing course who went
above and beyond in their duties. One recipient per year.

4.3 Representative Feedback from Students

I would like to thank Dr. Smith for showing great motivation and dedication to teaching. From
the lecture and the lecture notes, you can clearly tell that he is going over and beyond and
spending a lot of outside time so that we can have a good term. Seeing instructors like Dr. Smith
put this effort increases the students learning appetite. Thank you Dr. Smith, you made my last
term in StFX truly useful.
(Graduate student, Winter 2022)

[Prof. Smith] is highly knowledgeable in the subject area. He is clearly passionate about this
subject and it shows in his lectures. He put in a lot of hard work to prepare notes for our use.
[...] I usually don’t find theory classes interesting but ended up enjoying this one and I feel the
teachers enthusiasm for the subject helped a lot.
(Third year undergraduate students, Fall 2021)

My name is [...]. I was a Discrete Mathematics II student of yours this past semester. Your
enthusiasm for the subject matter was infectious, and inspired me to consider Post-Graduate
research in Pure Mathematics. I am reaching out to thank you, and wish you the best of luck,
whatever your future may hold.
(Email from former undergraduate student, Winter 2019)

I liked how genuinely interested Prof. Smith was in teaching the course. His enthusiasm makes
coming to this class the highlight of my day. His lecture notes both in-person and online are
in-depth and I know that if I have to miss a class, the online notes will prepare me for the next
assignment.
(Second year undergraduate student, Winter 2019)

6



Taylor J. Smith Teaching Portfolio

I was originally skeptical about having a grad student as an instructor, but Taylor ended up
being one of the better instructors I’ve had. It may be a symptom of him sympathizing more
with us undergrads than some tenured profs do, but he targeted his explanations at precisely the
right level, and actually answered low-level questions when students were having a tough time
understanding the content, never blowing off questions with the equivalent of “I shouldn’t have
to explain that, you should be smart enough to figure that out,” which I’ve seen from several
professors before.
(Second year undergraduate student, Spring 2017)

4.4 Representative Feedback from Colleagues

Taylor was my choice for head TA for the CISC 223 course. I made this choice when I heard that
he has had stellar feedback and standing ovations from students in CISC 203 in Winter 2019.
I run my courses by democratic council to avoid power dynamics as well as a redundancy layer
for important choices. Taylor has been vital in this process. He has provided great insight for
some choices, including midterm and final exam design. He is available for discussion, and I have
heard great feedback from students that go to office hours. He also volunteered to do a test run
of the midterm; it was a welcome surprise.
(Course instructor, Winter 2020)

5 Professional Development

5.1 Professional Development in University Teaching and Learning Program,
Queen’s University

The Queen’s University Professional Development in University Teaching and Learning program is intended
for students and fellows who have an interest in developing themselves in areas of university teaching and
learning. The program consists of five components that are specific to each of the areas of university teaching
and learning.

As a participant in this program, I gained an understanding of foundational issues in university teaching
and used my teaching experience to articulate my beliefs and attitudes toward these issues. I also became
acquainted with the scholarship of teaching and learning within the context of my subject area. Finally, I
applied Universal Design for Learning strategies to course material I created in the past to make it more
accessible and inclusive.

Appendix E contains a research prospectus and annotated bibliography I developed as part of the “Scholar-
ship in Teaching and Learning” component of this program.

Workshops Foundations in Teaching and Learning
completed Practical Experience

Educational Leadership
Scholarship in Teaching and Learning
Accessible Teaching and Learning

5.2 Fundamentals of University Teaching Program, University of Waterloo

The University of Waterloo Fundamentals of University Teaching program supports graduate students in
developing their knowledge and skills as university TAs and instructors. Participants attend a minimum of
six teaching workshops and lead three small-group microteaching sessions.

7



Taylor J. Smith Teaching Portfolio

As a participant in this program, I gained experience in teaching topics from my subject area to a small non-
expert audience, developed techniques for organizing and structuring lectures according to pre-established
learning objectives, and experimented with a variety of active learning and student-centred teaching meth-
ods. I also completed two self-directed modules on the theory of online learning, where I developed strategies
for facilitating online learning effectively in both fully-online and hybrid models.

Workshops Effective Lesson Plans
completed Giving and Receiving Feedback

Teaching Online – Basic Skills
Teaching Online – Advanced Skills
Classroom Delivery Skills
Teaching Methods
Teaching STEM Tutorials

8



Taylor J. Smith Teaching Portfolio

A Course Descriptions

St. Francis Xavier University

CSCI 355: Algorithm Design and Analysis

The development of provably-correct algorithms to solve problems and their analyses. Topics include basic
algorithm design techniques such as greedy, divide- and-conquer, and dynamic programming, and network
flows. Intractability and NP-completeness.

CSCI 356: Theory of Computing

An introduction to the theoretical foundations of computer science, examining finite automata, context-free
grammars, Turing machines, undecidability, and NP-completeness. Abstract models are employed to help
categorize problems as undecidable, intractable, tractable, and efficient.

CSCI 541: Theory of Computing

This course focuses on three areas central to the theory of computation: automata, computability and
complexity, to investigate the question: What are the fundamental capabilities and limitations of computers?
We study automata (models of computation) e.g., finite state machines, pushdown automata and Turing
machines and the languages recognized by them. We investigate complexity theory, to classify problems as
easy or hard and computability theory to classify problems as solvable or not.

CSCI 544: Computational Logic

This course focuses on automated theorem proving. We start with a rigorous treatment of propositional and
first order calculus (with equality) and the method of natural deduction, giving a thorough investigation of
the soundness and completeness proofs and decidability. Then we compare and contrast several automated
theorem proving methods such as tableau, resolution, sequent style calculus and rewrite systems. Extensions
to other logics will be discussed.

CSCI 550: Approximation Algorithms

Approximation algorithms are efficient algorithms that are guaranteed to compute solutions such that the
value of the solution is provably close to the optimum. This course provides an introduction at the graduate
level to the area of approximation algorithms, highlighting key algorithm design techniques for approximation
algorithms and the complementary study of hardness of approximation for hard optimization problems.

CSCI 554: Matrix Computation

Through the use of lectures, discussions, the text, assignments, and labs, this course will familiarize students
with the advanced knowledge of triangular systems, positive definite systems, banded systems, sparse posi-
tive definite systems, general systems; Sensitivity of linear systems; orthogonal matrices and least squares;
singular value decomposition; eigenvalues and eigenvectors; and QR algorithm with their applications.

Queen’s University

CISC 203: Discrete Mathematics for Computing II

Proof methods. Combinatorics: permutations and combinations, discrete probability, recurrence relations.
Graphs and trees. Boolean and abstract algebra.

9



Taylor J. Smith Teaching Portfolio

CISC/CMPE 223: Software Specifications

Introduction to techniques for specifying the behaviour of software, with applications of these techniques to
design, verification and construction of software. Logic-based techniques such as loop invariants and class
invariants. Automata and grammar-based techniques, with applications to scanners, parsers, user-interface
dialogs and embedded systems. Computability issues in software specifications.

CISC 462: Computability and Complexity

Turing machines and other models of computability such as λ-recursive functions and random-access ma-
chines. Undecidability. Recursive and recursively enumerable sets. Church-Turing thesis. Resource-bounded
complexity. Complexity comparisons among computational models. Reductions. Complete problems for
complexity classes.

University of Waterloo

CS 234: Data Types and Structures

Top-down design of data structures. Using representation-independent data types. Introduction to commonly
used data types, including lists, sets, mappings, and trees. Selection of data representation.

CS 240: Data Structures and Data Management

Introduction to widely used and effective methods of data organization, focusing on data structures, their
algorithms, and the performance of these algorithms. Specific topics include priority queues, sorting, dictio-
naries, data structures for text processing.

CS 462/662: Formal Languages and Parsing

Languages and their representations. Grammars –Chomsky hierarchy. Regular sets and sequential machines.
Context-free grammars –normal forms, basic properties. Pushdown automata and transducers. Operations
on languages. Undecidable problems in language theory. Applications to the design of programming lan-
guages and compiler construction.

10



Taylor J. Smith Teaching Portfolio

B Course Evaluations (Past 12 Months)

Winter 2022 – CSCI 355: Algorithm Design and Analysis

Response rate: 6 / 22 (27.2%)

Instructor is effective in organizing/
presenting course materials:

Strong agree 4
Agree 1
Neutral 1
Disagree 0
Strong disagree 0

Instructor shows interest/enthusiasm in
teaching this course:

Strong agree 5
Agree 1
Neutral 0
Disagree 0
Strong disagree 0

Instructor stimulated my interest in this
subject area:

Strong agree 3
Agree 1
Neutral 2
Disagree 0
Strong disagree 0

Instructor makes students feel free to ask
questions and express ideas:

Strong agree 5
Agree 1
Neutral 0
Disagree 0
Strong disagree 0

Instructor’s communication skills are appropriate
for the course:

Strong agree 5
Agree 0
Neutral 1
Disagree 0
Strong disagree 0

Instructor is available for consultation outside
of the class:

Strong agree 5
Agree 0
Neutral 1
Disagree 0
Strong disagree 0

Course material is well organized:

Strong agree 4
Agree 2
Neutral 0
Disagree 0
Strong disagree 0

I would recommend this course to fellow students:

Strong agree 3
Agree 2
Neutral 1
Disagree 0
Strong disagree 0

11



Taylor J. Smith Teaching Portfolio

Winter 2022 – CSCI 544: Computational Logic

Response rate: 18 / 30 (60.0%)

Instructor is effective in organizing/
presenting course materials:

Strong agree 15
Agree 3
Neutral 0
Disagree 0
Strong disagree 0

Instructor shows interest/enthusiasm in
teaching this course:

Strong agree 17
Agree 1
Neutral 0
Disagree 0
Strong disagree 0

Instructor stimulated my interest in this
subject area:

Strong agree 16
Agree 2
Neutral 0
Disagree 0
Strong disagree 0

Instructor makes students feel free to ask
questions and express ideas:

Strong agree 17
Agree 1
Neutral 0
Disagree 0
Strong disagree 0

Instructor’s communication skills are appropriate
for the course:

Strong agree 17
Agree 1
Neutral 0
Disagree 0
Strong disagree 0

Instructor is available for consultation outside
of the class:

Strong agree 16
Agree 2
Neutral 0
Disagree 0
Strong disagree 0

Course material is well organized:

Strong agree 15
Agree 3
Neutral 0
Disagree 0
Strong disagree 0

I would recommend this course to fellow students:

Strong agree 16
Agree 2
Neutral 0
Disagree 0
Strong disagree 0

12



Taylor J. Smith Teaching Portfolio

Winter 2022 – CSCI 554: Matrix Computation

Response rate: 15 / 27 (55.5%)

Instructor is effective in organizing/
presenting course materials:

Strong agree 13
Agree 2
Neutral 0
Disagree 0
Strong disagree 0

Instructor shows interest/enthusiasm in
teaching this course:

Strong agree 13
Agree 2
Neutral 0
Disagree 0
Strong disagree 0

Instructor stimulated my interest in this
subject area:

Strong agree 13
Agree 2
Neutral 0
Disagree 0
Strong disagree 0

Instructor makes students feel free to ask
questions and express ideas:

Strong agree 13
Agree 1
Neutral 0
Disagree 0
Strong disagree 0

Instructor’s communication skills are appropriate
for the course:

Strong agree 14
Agree 1
Neutral 0
Disagree 0
Strong disagree 0

Instructor is available for consultation outside
of the class:

Strong agree 13
Agree 2
Neutral 0
Disagree 0
Strong disagree 0

Course material is well organized:

Strong agree 12
Agree 3
Neutral 0
Disagree 0
Strong disagree 0

I would recommend this course to fellow students:

Strong agree 13
Agree 2
Neutral 0
Disagree 0
Strong disagree 0

13



Taylor J. Smith Teaching Portfolio

Fall 2021 – CSCI 356: Theory of Computing

Response rate: 13 / 35 (37.1%)

Instructor is effective in organizing/
presenting course materials:

Strong agree 9
Agree 2
Neutral 1
Disagree 0
Strong disagree 1

Instructor shows interest/enthusiasm in
teaching this course:

Strong agree 10
Agree 2
Neutral 0
Disagree 1
Strong disagree 0

Instructor stimulated my interest in this
subject area:

Strong agree 7
Agree 2
Neutral 1
Disagree 1
Strong disagree 2

Instructor makes students feel free to ask
questions and express ideas:

Strong agree 9
Agree 4
Neutral 0
Disagree 0
Strong disagree 0

Instructor’s communication skills are appropriate
for the course:

Strong agree 9
Agree 3
Neutral 1
Disagree 0
Strong disagree 0

Instructor is available for consultation outside
of the class:

Strong agree 7
Agree 6
Neutral 0
Disagree 0
Strong disagree 0

Course material is well organized:

Strong agree 7
Agree 5
Neutral 0
Disagree 0
Strong disagree 1

I would recommend this course to fellow students:

Strong agree 7
Agree 2
Neutral 1
Disagree 0
Strong disagree 3

14



Taylor J. Smith Teaching Portfolio

Fall 2021 – CSCI 541: Theory of Computing

Response rate: 10 / 18 (55.5%)

Instructor is effective in organizing/
presenting course materials:

Strong agree 10
Agree 0
Neutral 0
Disagree 0
Strong disagree 0

Instructor shows interest/enthusiasm in
teaching this course:

Strong agree 10
Agree 0
Neutral 0
Disagree 0
Strong disagree 0

Instructor stimulated my interest in this
subject area:

Strong agree 9
Agree 1
Neutral 0
Disagree 0
Strong disagree 0

Instructor makes students feel free to ask
questions and express ideas:

Strong agree 10
Agree 0
Neutral 0
Disagree 0
Strong disagree 0

Instructor’s communication skills are appropriate
for the course:

Strong agree 10
Agree 0
Neutral 0
Disagree 0
Strong disagree 0

Instructor is available for consultation outside
of the class:

Strong agree 9
Agree 1
Neutral 0
Disagree 0
Strong disagree 0

Course material is well organized:

Strong agree 10
Agree 0
Neutral 0
Disagree 0
Strong disagree 0

I would recommend this course to fellow students:

Strong agree 9
Agree 1
Neutral 0
Disagree 0
Strong disagree 0

15



Taylor J. Smith Teaching Portfolio

Fall 2021 – CSCI 550: Approximation Algorithms

Response rate: 15 / 22 (68.1%)

Instructor is effective in organizing/
presenting course materials:

Strong agree 10
Agree 3
Neutral 1
Disagree 0
Strong disagree 1

Instructor shows interest/enthusiasm in
teaching this course:

Strong agree 8
Agree 5
Neutral 2
Disagree 0
Strong disagree 0

Instructor stimulated my interest in this
subject area:

Strong agree 6
Agree 7
Neutral 1
Disagree 0
Strong disagree 0

Instructor makes students feel free to ask
questions and express ideas:

Strong agree 11
Agree 4
Neutral 0
Disagree 0
Strong disagree 0

Instructor’s communication skills are appropriate
for the course:

Strong agree 10
Agree 4
Neutral 1
Disagree 0
Strong disagree 0

Instructor is available for consultation outside
of the class:

Strong agree 6
Agree 7
Neutral 2
Disagree 0
Strong disagree 0

Course material is well organized:

Strong agree 7
Agree 7
Neutral 0
Disagree 0
Strong disagree 1

I would recommend this course to fellow students:

Strong agree 6
Agree 5
Neutral 3
Disagree 0
Strong disagree 1

16



St. Francis Xavier University
Department of Computer Science

CSCI 541: Theory of Computing
Course Outline

Fall 2021

1 Course Overview

This course focuses on three areas central to the theory of computation: automata, computability and
complexity, to investigate the question: What are the fundamental capabilities and limitations of computers?
We study automata (models of computation) e.g., finite state machines, pushdown automata and Turing
machines and the languages recognized by them. We investigate complexity theory, to classify problems as
easy or hard and computability theory to classify problems as solvable or not.

2 Learning Objectives

By the end of this course, you will be able to:

• Determine a language’s place in the Chomsky hierarchy.
• Convert among equivalently powerful notations for a language, including among DFAs, NFAs, and

regular expressions, and between PDAs and CFGs.
• Explain the Church-Turing thesis and its significance.
• Explain Rice’s Theorem and its significance.
• Provide examples of uncomputable functions.
• Prove that a problem is uncomputable by reducing a classic known uncomputable problem to it.

Objectives from CS2013: Curriculum Guidelines for Undergraduate Programs in Computer Science, ACM/IEEE.

3 Instructor

Taylor J. Smith

• Email: tjsmith@stfx.ca
• O�ce location: Annex, Room 9A
• Student hours: Monday, 2:15pm–3:15pm; Tuesdays, 9:15am–10:15am

4 Class Time and Location
• Tuesday, 8:15am–9:05am
• Wednesday, 10:15am–11:05am
• Friday, 9:15am–10:05am

All lectures are held in Mulroney Hall, Room 4032.

Taylor J. Smith Teaching Portfolio

C Recent Course Outline

17



CSCI 541: Theory of Computing
Course Outline, Fall 2021 Page 2

5 Evaluations

Your final grade will be based on the following components:

• Two assignments (15% each, total 30%)
• Two quizzes (12.5% each, total 25%)
• Written report (total 40%): a topic proposal document (10%) and the report itself (30%)
• Participation in lectures (5%)

You must complete both the topic proposal and the written report in order to pass the course, even if the
weighted sum of your other submissions is at least 50%.

Your mid-term grade will be communicated to you by the deadline specified in the university’s Academic
Regulations. Your mid-term grade will consist of the weighted sum of the grades of your first assignment
and your first quiz.

6 Method of Instruction

This course will be delivered face-to-face (i.e., all contact between instructor and students is in a physical
classroom on campus). Course materials will be posted to the instructor’s website.

7 Tentative Course Schedule

Week/Date Topic Due Dates
Week 1 Introduction to course, mathematical preliminaries
Week 2 Regular langs.: finite automata, nondeterminism, nonregularity
Week 3 Context-free langs.: pushdown automata, grammars, unary CFLs
Week 4 Context-free langs.: ambiguous grammars, non-CFness
Week 5 Deterministic context-free langs., parsing Quiz 1 (Oct. 6)
Week 6 Parsing, state complexity Assn. 1 (Oct. 15)
Week 7 Beyond context-free: Turing machines, variants of the model
Week 8 Decidability, undecidability, mapping reducibiity Proposal (Oct. 29)
Week 9 Mapping reducibility, Turing reducibility, Kolmogorov complexity Quiz 2 (Nov. 3)
Week 10 Complexity theory basics: algorithm analysis, P, NP
Week 11 NP-completeness, reducibility, space complexity Assn. 2 (Nov. 26)
Week 12 PSPACE, L, NL, completeness, course review Report (Dec. 7)

8 Course Materials and Resources

Course notes will be provided for each lecture. The course textbook will be used as an optional supplement.

Required Text. None.

Recommended Text. M. Sipser, Introduction to the Theory of Computation. Cengage, 3rd edition, 2012.

9 Method of Evaluation

Assignments. This component will give you an opportunity to both demonstrate your understanding of
course material and apply your understanding to a variety of problems. Each of the two assignments will
consist of questions relating to material covered in the course between the assignment being issued and the
due date. Assignments may be completed either individually or in groups of up to four people; however,
if an assignment is completed as a group, each member of the group will receive the same grade for that
assignment.

Taylor J. Smith Teaching Portfolio

18



CSCI 541: Theory of Computing
Course Outline, Fall 2021 Page 3

Quizzes. This component will serve as a diagnostic to gauge your individual understanding of course
material. Each quiz will consist of questions relating to material covered in the course up to the date of that
quiz, and will generally be shorter than an assignment. Quizzes will be distributed at the end of Tuesday’s
lecture and will be due at the beginning of Wednesday’s lecture (i.e., 25 hours later). Quizzes must be
completed individually; collaboration or group work is not permitted.

Report. This component consists of two submissions: a topic proposal document and the report itself.

• The topic proposal is a one- to two-page document meant to serve as a summary of your chosen topic
and what you plan to discuss in your report.

• The report itself will be a survey-style paper introducing your chosen topic and reviewing the big
results in the area. It is expected to be about 10 to 20 pages, including full bibliographic references.

The written report component will be an individual submission. Further details will be distributed later in
the term.

Participation. This component is designed to encourage active engagement with the course material during
lectures; for example, by asking questions or by involving yourself in discussions. As long as you consistently
attend lectures and engage with the material, you will receive the full 5% for this component.

Taylor J. Smith Teaching Portfolio

19



St. Francis Xavier University
Department of Computer Science

CSCI 356: Theory of Computing
Lecture 1: Regular Languages

Fall 2021

1 Regular Operations and Regular Languages

In this lecture, we will begin our exploration into the theory of computation by investigating a rather simple
model of computation and determining the kinds of languages this model can recognize. Before we get to
defining our model, though, we will take a look at the languages themselves.

1.1 Regular Operations

Recall that, if we’re given two sets A and B, we can apply certain operations to produce new sets. The
set operations we’re most familiar with are those of union, intersection, complement, and di↵erence. Since
languages are essentially sets, we can similarly apply certain operations to languages in order to produce new
languages. Three operations in particular are so important that we give them a special name: the regular
operations.

Definition 1 (Regular operations). Let L, L1, and L2 be languages. Then the regular operations of union,
concatenation, and Kleene star are defined as follows:

• Union: L1 [ L2 = {w | w 2 L1 or w 2 L2};

• Concatenation: L1L2 = {wv | w 2 L1 and v 2 L2}; and

• Kleene star: L⇤ =
S

i�0 Li, where L0 = {✏}, L1 = L, and Li = {wv | w 2 Li�1 and v 2 L}.

The union operation, naturally, works in exactly the same way for languages as it does for sets. The other
two operations, on the other hand, don’t have an exact match to a set operation, but we can reason about
them by drawing analogies to other operations we’ve seen.

The concatenation operation is most similar to our notion of tuples, if we stripped away all of the sequence-y
notation; concatenation takes two words and “connects” the end of the first word to the beginning of the
second word.

Lastly, the Kleene star operation is somewhat similar to taking a repeated Cartesian product, if we “connect”
our elements (words) via concatenation rather than in a tuple. Note that, since the Kleene star allows us to
take zero copies of a word, the empty word ✏ is always included in the resulting language.

Example 2. Let L1 = {a, b} and L2 = {d, e}. Then L1 [ L2 = {a, b, d, e}, L1L2 = {ad, ae, bd, be},
L⇤

1 = {✏, a, b, aa, ab, ba, bb, aaa, aab, . . . }, and L⇤
2 = {✏, d, e, dd, de, ed, ee, ddd, dde, . . . }

1.2 Regular Languages

So, what makes these particular operations so special, and why do we refer to them as the regular operations?
As it turns out, taking just these three operations is su�cient to allow us to define the smallest class of
languages that is “interesting enough” to study1: the regular languages.

1There is a smaller class called the class of finite languages. However, it’s not too interesting: it consists only of languages
with a finite number of words. Introducing the Kleene star allows us to produce infinite-size languages.

Taylor J. Smith Teaching Portfolio

D Sample Course Materials

Lecture Notes: Theory of Computing

20



CSCI 356: Theory of Computing
Lecture 1, Fall 2021 Page 2

Definition 3 (Regular languages—language-theoretic def’n). Let ⌃ be an alphabet. The class of regular
languages is defined inductively as follows:

1. The empty language, ;, is regular.

2. For each a 2 ⌃, the language {a} is regular.

3. If L1 and L2 are regular, then L1 [ L2 is regular.

4. If L1 and L2 are regular, then L1L2 is regular.

5. If L1 is regular, then L⇤
1 is regular.

At this point, you might be asking yourself: why do we call these operations and languages “regular”?
Stephen Kleene introduced the notion of a regular language in the 1950s, but his justification for the termi-
nology was basically that he couldn’t come up with any better name:

“We would welcome any suggestions as to a more descriptive term.”
— Stephen Kleene, Representation of Events in Nerve Nets and Finite Automata

RAND Corporation Research Memorandum RM-704, 1951.

Keep the definition of the class of regular languages in mind as we go forward. It will reappear once we
introduce our chosen model of computation in this lecture.

2 Finite Automata

The entire point of studying computer science, some might argue, is to determine exactly what computers
are capable of. Indeed, humans created computers so that we could pass o↵ boring or repetitive work onto
a machine and give our brains a break! However, considering a full computer in the very beginning of our
studies is kind of like learning to swim by jumping into the deep end of a pool. In order to learn without
getting overwhelmed, we will begin by considering a very simple model of computation that gives us just
enough power to actually perform an elementary computation.

If you’ve ever used a vending machine, or waited in a car at a tra�c light, or walked through an automatic
door, then you’re already familiar with the notion of a finite automaton. Consider, for example, how an
automatic door works:

door
closed

door
open

sensor activated
by person

sensor inactive
for 5 seconds

The door transitions between two states—closed and open—depending on what the sensor is reporting. The
states (circles) represent the door’s current status, and the transitions (arrows) correspond to an input given
to the door. Note that the door has no way of knowing or remembering that it’s closed or open apart from
being in a state; it responds solely based on the input it receives from the sensor. This is a finite automaton:
an automaton in the sense that it’s a machine that performs an action based on predetermined conditions
or instructions, and finite in the sense that there’s a finite number of possible states the machine can be in
at a given time.

2.1 Definition

We can use finite automata to model simple computations that take some input word and don’t require
memory or storage. In a computation, the states of the finite automaton correspond to our current step of
the computation. For example, did we just begin the computation, or are we midway through reading some

Taylor J. Smith Teaching Portfolio

21



CSCI 356: Theory of Computing
Lecture 1, Fall 2021 Page 3

input, or something else? The transitions of the finite automaton take us between states, depending on the
label of the transition. If we have, say, a binary word as the input to our finite automaton, then we can
transition to a di↵erent state depending on whether the next symbol in the word is a 0 or a 1.

Formally speaking, a finite automaton is just a 5-tuple.

Definition 4 (Finite automaton). A finite automaton is a tuple (Q,⌃, �, q0, F ), where

• Q is a finite set of states;

• ⌃ is an alphabet ;

• � : Q ⇥ ⌃ ! Q is the transition function;

• q0 2 Q is the initial or start state; and

• F ✓ Q is the set of final or accepting states.

We’re already familiar with states and alphabets, and we know a little bit about transitions from our example.
The transition function � is the mathematical formalization of the arrows in our diagram. Given an ordered
pair of state and symbol being read, the transition function tells us which state to go to next. For example,
if we had a very simple finite automaton like

q0start q1
a

then the single transition would be represented by the function �(q0, a) = q1. If a given finite automaton has
a large number of transitions, then we can represent each transition concisely in a table format rather than
writing each transition out individually.

Note that, since we’re dealing with a transition function, any pair of state and symbol can map to at most
one state. This condition ensures that we always make the same transition on the same state/symbol pair.

You may have also noticed that the states in our very simple finite automaton had some special flair added
to them. The state q0 has an arrow labelled “start” pointing to it, and the state q1 has two circles instead of
one. This is how we denote initial and final states in our diagram. Initial states have an incoming transition
arrow pointing at the state, while final states are double-circled. We typically have just one initial state in
a finite automaton, but it’s possible to have more than one. On the other hand, we can have as many or as
few final states as we want.

Example 5. Consider the finite automaton M1 = (Q,⌃, �, q0, F ) where Q = {q0, q1}, ⌃ = {0, 1}, q0 is the
initial state, F = {q1}, and � is defined as follows:

0 1

q0 q0 q1

q1 q1 q0

We can draw this finite automaton diagrammatically:

q0start q1

0

1

0

1

This finite automaton checks whether a binary word has odd parity; that is, whether it contains an odd
number of 1s.

Taylor J. Smith Teaching Portfolio

22



CSCI 356: Theory of Computing
Lecture 1, Fall 2021 Page 4

Example 6. Consider the following diagram of a finite automaton:

q0start q1 q2

c

b

c

b

b,c

This finite automaton checks whether every occurrence of b in an input word is immediately followed by an
occurrence of c.

Based on this diagram, we can establish that Q = {q0, q1, q2}, ⌃ = {b, c}, q0 is the initial state, F = {q0},
and � is defined as follows:

b c

q0 q1 q0

q1 q2 q0

q2 q2 q2

2.2 Computations: Inputs, Acceptance, and Rejection

Now that we know how to define a finite automaton, what can we do with it? Observe that, in our definition,
we took care to specify the alphabet ⌃. This alphabet gives us information about the kinds of input words
we can give to a finite automaton. Giving an input word to a finite automaton is much like typing input()

in a Python program or scanf() in a C program; it gives the computer something to read and work with.

When a finite automaton is given an input word, we can imagine the word is written on a reel of film where
each symbol in the word has its own frame.

a b a

Now, imagine the finite automaton is a film projector, but the rewind button is broken. When we play the
film reel starting at the first frame, the projector can only show one frame at a time, and once it moves to
the next frame it can never return to the previous one. This is essentially how a finite automaton processes
its input: starting with the first symbol of the input word, the finite automaton reads the symbol, transitions
to a state, and then moves to the next symbol.

Once the finite automaton reaches the end of its input word, it must make a decision to either accept or
reject the word. Whether or not the finite automaton accepts the input word depends entirely on the state
the finite automaton is in at the moment it reaches the end of the word. If the finite automaton is in a final
state and it has no more symbols left to read, then it accepts the word. Otherwise, the finite automaton
must be in a non-final state, and it therefore rejects the word.

The set of all input words that a finite automaton M accepts is called the language of the finite automaton,
denoted L(M), and it’s just like any other language: it consists of words over the alphabet ⌃. If a finite
automaton M accepts (or recognizes2) a language A, then L(M) = A. Note that, even though a finite
automaton can accept many input words, it can only recognize one language.

2For clarity’s sake, I will try to use the word “accept” only when referring to input words given to a finite automaton, and
I will use “recognize” when referring to the language of a finite automaton.

Taylor J. Smith Teaching Portfolio

23



CSCI 356: Theory of Computing
Lecture 1, Fall 2021 Page 5

Example 7. Let ⌃ = {a, b}, and consider the language

L|w|b1 = {w | w contains at most one occurrence of the symbol b}.

This language can be recognized by the following automaton:

q0start q1 q2

a

b

a

b
a, b

If the input word w contains zero bs, then the finite automaton will remain in the final state q0. Likewise, if
w contains one b, then the finite automaton will enter and remain in the final state q1. Only if w contains
two or more bs does the finite automaton enter the state q2, where it becomes “stuck” and can no longer
accept the input word.

Example 8. A finite automaton with no final states is still able to recognize one language: the empty
language, ;. This is because the language of input words accepted by the finite automaton is empty.

As a matter of notation, we will refer to the class of languages recognized by some finite automaton by the
abbreviation DFA. (What does the D mean? We’ll find out in the next section. . . )

We wrap up this section by precisely defining what it means for a finite automaton to accept an input word;
that is, by formalizing the notion of an accepting computation. We don’t need anything new to do this; we
already have all the machinery we need.

Definition 9 (Accepting computation of a finite automaton). Let M = (Q,⌃, �, q0, F ) be a finite automaton,
and let w = w0w1 . . . wn�1 be an input word of length n where w0, w1, . . . wn�1 2 ⌃. The finite automaton
M accepts the input word w if there exists a sequence of states r0, r1, . . . , rn 2 Q satisfying the following
conditions:

1. r0 = q0;

2. �(ri, wi) = ri+1 for all 0  i  (n � 1); and

3. rn 2 F .

Now that we have the formal notions of a finite automaton and an accepting computation, we can provide
an alternative definition of what it means for a language to be regular.

Definition 10 (Regular languages—automata-theoretic def’n). If some finite automaton M recognizes a
language L, then L is regular.

2.3 Nondeterminism

Remember how, when we were discussing the transition function earlier, we mandated a condition that
any pair of state and symbol must map to at most one state? This condition ensured that if we gave the
same input word to the same finite automaton, we would end up with the same result. This is known as
deterministic computation. (And now you know what the D in DFA stands for!)

While determinism isn’t inherently a bad thing, it can unfortunately make our job harder if we’re trying to
construct a finite automaton that recognizes certain “di�cult” languages. For example, suppose we wanted to
construct a deterministic finite automaton that recognizes the language of words over the alphabet ⌃ = {0, 1}
where the third-from-last symbol is 0. This finite automaton should accept input words like 011, 10010, and
1010001010011000, but it should reject input words like 110 or 01. Sounds easy to do, right? After all, we
really just need to check one symbol: the symbol in the third-from-last position. As it turns out, however,
this is the deterministic finite automaton in question:

Taylor J. Smith Teaching Portfolio

24



CSCI 356: Theory of Computing
Lecture 1, Fall 2021 Page 6

q0start q1 q2 q3

q4 q5 q6 q7

1

0 0

1

0

1

0

11
0

1

0

1

0

0

1

Keep in mind also that this deterministic finite automaton only works for input words where the third-from-
last symbol is 0. If we wanted to, say, check the fourth-from-last symbol, we would need to construct a whole
new finite automaton—and this one would have twice as many states as our previous one!

So, how do we make our job easier and our finite automata smaller? We get rid of the determinism condition.
Specifically, we allow for state/symbol pairs to map to one or more states. (We’re able to preserve the
“function” part of our transition function by mapping each state/symbol pair not to multiple di↵erent
states, but rather to an element of the power set of states. We’ll clarify this in the definition.)

If we get rid of the determinism condition, then the finite automaton can, in a sense, “guess” which step to
take at certain points in the computation. If, in a given state, there is more than one transition out of that
state on the same symbol, then the finite automaton has multiple options for which transition it can take.
As you might have guessed, this is called nondeterminism, and the definition of a nondeterministic finite
automaton is nearly identical to our earlier definition of a deterministic finite automaton.

Definition 11 (Nondeterministic finite automaton). A nondeterministic finite automaton is a tuple (Q,⌃, �, q0, F ),
where

• Q is a finite set of states;

• ⌃ is an alphabet;

• � : Q ⇥ ⌃ ! P(Q) is the transition function;

• q0 2 Q is the initial or start state; and

• F ✓ Q is the set of final or accepting states.

As you can see, the only change we had to make to the definition is in the transition function, where we
now map to the power set P(Q) instead of the state set Q. The element of the power set being mapped to
is exactly the subset of states that the nondeterministic finite automaton can transition to from its current
state and on its current symbol.

As an illustration of how nondeterminism can simplify the finite automata we construct, think back to our
example of the language of words whose third-from-last symbol is 0. Here is the nondeterministic version of
the finite automaton recognizing this language:

q0start q1 q2 q3

0, 1

0

0

1

0

1

Taylor J. Smith Teaching Portfolio

25



CSCI 356: Theory of Computing
Lecture 1, Fall 2021 Page 7

Here, the state q0 is doing double duty: not only is it reading all of the symbols in the input word up to the
third-from-last symbol, but it’s also checking that the third-from-last symbol is in fact 0. If it is, then we
transition from state q0 to state q1, and the remaining states simply read the last two symbols (whatever
they may be).

The nondeterminism in this machine is limited to state q0, where we have two outgoing transitions on the
same symbol 0: one transition loops back to the same state q0, while the other transition takes us to state
q1. We can represent this with the transition function by writing �(q0, 0) = {q0, q1}, and this abides by our
definition since {q0, q1} 2 P(Q).

Example 12. The following finite automaton is nondeterministic, because some states have multiple out-
going transitions on the same symbol:

q0start q1

q2 q3

0

1

1

0

1

0

1

0

1

A nondeterministic finite automaton accepts an input word in exactly the same way as a deterministic finite
automaton: if the finite automaton is in a final state and there are no more symbols of the input word left
to read, then the input word is accepted. If not, then the input word is rejected. We will refer to the class
of languages recognized by some nondeterministic finite automaton by the abbreviation NFA.

The computation of a nondeterministic finite automaton, however, is slightly di↵erent than in the deter-
ministic case. Since the finite automaton can take potentially many transitions from one state/symbol pair,
at such a point in the computation, the finite automaton “splits up” and runs multiple copies of itself in
parallel. If we were to visualize such a computation, we would obtain a diagram that resembles a tree. (In
fact, such a visualization is called a computation tree.) In each branch of the computation, the corresponding
copy of the finite automaton continues its computation until it either reaches the end of the input word or
finds itself with no more transitions to follow (which could happen if the finite automaton reads a symbol in
a state with no outgoing transition on that symbol). In the latter case, that branch dies while the remaining
branches continue with their computations. Similarly, if there are no more symbols to read in the input
word and that copy of the finite automaton isn’t in a final state, that branch dies. A computation of a
nondeterministic finite automaton is accepting only if there exists at least one branch of the computation
where the finite automaton is in a final state after reading every symbol of the input word.

Example 13. Recall the nondeterministic finite automaton from the previous example. Does this automaton
accept the input word 10010? Let’s check by drawing the computation tree. Each vertex indicates the current
state of the finite automaton at that point in the computation, and the symbols remaining in the input word
are listed on the right.

Taylor J. Smith Teaching Portfolio

26



CSCI 356: Theory of Computing
Lecture 1, Fall 2021 Page 8

q0

q1

q1

q1

q2

q2

q3

q2

q2

q3

q2

q2

q2

q1

q1 q3

10010

10010

10010

10010

10010

10010

Since there exists at least one branch of the computation tree where the finite automaton is in a final state
after reading the entire input word, the finite automaton accepts the word 10010.

We can formalize the notion of an accepting computation once again for nondeterministic finite automata;
the only change we need to make is in the second condition.

Definition 14 (Accepting computation of a nondeterministic finite automaton). Let M = (Q,⌃, �, q0, F )
be a nondeterministic finite automaton, and let w = w0w1 . . . wn�1 be an input word of length n where
w0, w1, . . . wn�1 2 ⌃. The finite automaton M accepts the input word w if there exists a sequence of states
r0, r1, . . . , rn 2 Q satisfying the following conditions:

1. r0 = q0;

2. ri+1 2 �(ri, wi) for all 0  i  (n � 1); and

3. rn 2 F .

Going one step further, we can take a nondeterministic finite automaton and modify it so that it can
transition not just after reading a symbol, but whenever it wants. If a certain special transition called an
epsilon transition exists between two states qi and qj , a finite automaton in state qi can immediately transition
to state qj without reading the next symbol of the input word. We call such a model a nondeterministic
finite automaton with epsilon transitions, and the class of languages recognized by this model is denoted by
✏-NFA.

Example 15. The following nondeterministic finite automaton uses epsilon transitions:

q0start q1 q2 q3
a

✏

a

✏

b

b

This finite automaton accepts all input words starting with zero, one, or two as followed by at least one b.

Taylor J. Smith Teaching Portfolio

27



Taylor J. Smith Teaching Portfolio

Assessment: Algorithm Analysis and Design

CSCI 355: Algorithm Design and Analysis
Assignment 1 Page 2

3.[5 marks] Consider the following problem: given a one-dimensional array A containing n integers, compute a two-
dimensional array B where entry B[i, j], i < j, stores the sum of array entries A[i]+A[i+1]+ · · ·+A[j].
You can assume that all entries B[i, j] with i � j are zero.

The following algorithm solves this problem:

Algorithm: Subarray addition

for 1  i  n do
for (i + 1)  j  n do

B[i, j] sum of array entries A[i] through A[j]

(a) Establish a bound O(f(n)) on the running time of this algorithm, where f(n) is some function and
n is the size of the input given to the algorithm.

(b) Using your function f(n) from part (a), establish a matching bound ⌦(f(n)) on the running time
of this algorithm. Again, n is the size of the input given to the algorithm.

Hint. Consider the case when i  n
4 and j � 3n

4 . What is the least number of operations required
to perform the summation within the inner for loop?

(c) What do your two bounds from parts (a) and (b) imply about the performance of this algorithm?

4.[8 marks] A group of ornithology researchers has asked you to help them track the spread of a novel crow virus
called Corvid. The researchers have tagged n birds in their system and named them B1 through Bn.
They give you a set of m data tuples indicating when pairs of birds were detected together: this data is
of the form (Bi, Bj , tk), indicating that birds Bi and Bj were together at time tk.

If one infected bird Bi is detected with an uninfected bird Bj at time tk, then bird Bj becomes infected
from time tk onward. This infection is modelled by the existence of either of the tuples (Bi, Bj , tk) or
(Bj , Bi, tk). The spread of the virus can then be modelled by a sequence of tuples: if bird Bi is infected
by time tk, and there are tuples (Bi, Bj , tk) and (Bj , Bm, t`) where tk  t`, then bird Bm will be infected
via bird Bj .

Design an algorithm that answers the following question: if bird Ba was infected by the virus at time
tx, could it have infected bird Bb by time ty? Your input is the set of m tuples defined earlier, as well as
Ba, Bb, tx, and ty. You can assume that the tuples are sorted by time, that each pair of birds is found
together at most once, and that a bird remains forever infectious once it is infected.

You do not need to establish the correctness or running time of your algorithm, but it may help to know
that the o�cial solution runs in linear time.

Assessment: Discrete Mathematics

Queen’s University
School of Computing

CISC 203: Discrete Mathematics for Computing II
Assignment 1

Due January 31, 2019 at 11:30am

1.[5 marks] In algorithm analysis, we care a lot about how many steps (f(n)) an algorithm performs relative to
the size of its input (n). For instance, an algorithm with a worst-case performance of n3 is slower
than one with a worst-case performance of n2, for large-enough n. In general, if an algorithm performs
polynomially-many steps, then its performance worsens as the exponent grows. We can show a similar
result for algorithms that perform exponentially-many steps; that is, xn steps for some fixed x.

Prove that if a and b are real numbers such that 0 < a < b, then an < bn for all natural numbers n ≥ 1.

2.[5 marks] UTF-8 is part of the Unicode character encoding standard. It is the most common standard for encoding
text on the web, in email, and in documents.

(a) UTF-8 is designed to be backwards-compatible with the ASCII encoding, which contains English
alphabet characters and punctuation symbols. Characters in these alphabets have UTF-8 encodings
of the form 0xxxxxxx, where x is one bit (0 or 1). How many possible characters can be represented
with this encoding?

(b) Other alphabets, like Greek and Russian, have UTF-8 encodings of the form 110xxxxx10xxxxxx,
where x is defined as before. How many possible characters can be represented with this encoding?

(c) The English alphabet has 26 uppercase letters, the Greek alphabet has 24 uppercase letters, and
the Russian alphabet has 33 uppercase letters. Some of these alphabets share letters that look
identical, so they don’t need to be encoded multiple times. English and Greek share 14 letters,
English and Russian share 12 letters, Greek and Russian share 14 letters, and all three languages
share 11 letters. How many encodings in total do these three languages require, if shared letters
also share encodings?

3.[5 marks] Imagine we are developing a new algorithm to optimize access to files stored in a computer’s memory.
Assume, for simplicity’s sake, that our memory is divided into blocks of equal size, and each file we store
takes up exactly one block of memory.

(a) Version 1 of our algorithm simply takes a file and inserts it into an empty location in memory. If
our computer has 10 empty memory locations, and we want to store 10 different files, in how many
ways can our algorithm store every file?

(b) Version 2 of our algorithm stores all files of the same type together, so files of the same type are
beside each other in memory. If our computer has 10 empty memory locations, and we want to
store 4 text files, 3 music files, and 3 video files (all of which are different), in how many ways can
our algorithm store every file?

4.[5 marks] Some text compression algorithms rely on the ability to condense blocks of consecutive identical bits into
smaller encodings. Naturally, such algorithms do not perform well on bit strings with no consecutive
identical bits. Let’s investigate a simple example of these “bad” bit strings.

How many bit strings of length 8 contain no consecutive 0 bits?

Hint. Split your solution into cases, with each case considering all bit strings of length 8 containing
exactly k 0 bits. Do not simply list all of the bit strings explicitly.

Assessment: Theory of Computing

CSCI 356: Theory of Computing
Assignment 1 Page 2

3.[8 marks] Given the following nondeterministic finite automaton M, convert it to a deterministic finite automaton
M0 recognizing the same language. Show all your work in addition to giving the deterministic finite
automaton.

q0start q1

q2 q3

b
a

a

b

a

ba

b

a

b

4.[5 marks] The Twitter account @happyautomata (https://twitter.com/happyautomata) automatically gener-
ates examples of finite automata over both the English alphabet and the “emoji alphabet”. An example
of an “emoji automaton” is shown below:

Visit the Twitter account, choose your favourite “emoji automaton” with at least three states, and
convert the finite automaton to an equivalent regular expression. Show all your work in addition to
giving the regular expression.

If you don’t use Twitter, then you are welcome to use the above “emoji automaton” to form your answer.

If you don’t wish to use emoji in your regular expression (or you can’t get it to work nicely), you can

convert emoji to letters; for example, = b, = p, and = w.

28



Scholarship of Teaching and Learning 
Research Prospectus 

Taylor J. Smith 

Courses in theoretical computer science are unlike most traditional computer science courses at the 
university level; they are, in fact, more akin to a course in pure or applied mathematics. In a theoretical 
computer science lecture, both students and instructors are unlikely to do any coding, and neither party 
may even be required to use a computer at all! Unfortunately, the inclination of the typical computer 
science student is to avoid courses that are math-heavy, and as a result, theory courses are often 
considered by students to be the least popular courses offered by a department. 

As an undergraduate student, my first course in theoretical computer science was led by an instructor who 
relied on PowerPoint slides made by the author of the course textbook. As a result, I felt that neither I nor 
the instructor had any “real” connection to the material being taught in the course, and my attention 
waned during each lecture. Prior to beginning my doctoral studies, I taught a second-year computer 
science course that had a set of pre-made slides compiled by past instructors. Here, I was exposed to the 
other side of the experience: if I just read off of slides, then what incentive do students have to come to 
class versus reading the slides from home? Could student interest in the course increase if they physically 
engaged with the material, say, through writing notes by hand or participating in live classroom activities? 

While I opted during that course to deliver material using a combination of slides and chalkboard work, 
the question of slides and incentives never left my mind. As I began to hone my teaching skills, I 
observed various instructors and compared courses that were delivered primarily via slides to courses that 
were delivered primarily through other means, such as chalkboard work or seminar-style lectures. While I 
was aware of studies investigating the effects of technology in the university classroom, I had never heard 
of any study investigating technology specifically in a theoretical computer science course. Can the type 
of abstract material covered in such a course be delivered effectively using technology, or (like 
mathematics) are students better off learning such material “by hand”, through writing notes and working 
offline? With more and newer classroom technology being introduced by the month, and especially with 
courses moving online in response to this year’s pandemic, can—or should—courses in theoretical 
computer science change accordingly, and how will students be impacted? 

Based on the existing literature, it seems that prior work can be distilled into three general statements: 

1. PowerPoint slides should be used to communicate difficult or complex topics, especially if they can 
be presented in a visual manner; 

2. PowerPoint slides do not have a noticeable effect on visual information retention, but may affect other 
forms of information retention; and 

3. Students in engineering disciplines appreciate the use of PowerPoint slides for purposes such as note-
taking, but do not have a strong preference for lectures that use PowerPoint slides. 

However, I found it notable that I could not locate any research on the use of PowerPoint specifically in 
computer science lectures. Since computer science is such a vast discipline, it may be the case that some 
topics of study lend themselves more readily to PowerPoint-based lectures or other educational uses of 
technology. Thus, it is necessary for me to restrict the scope of my research question to the specific 
subdiscipline of theoretical computer science (and perhaps even to introductory theory courses, to ensure 
all students have the same baseline knowledge). Thus, I propose to investigate the following question: 

“Does the use of presentation technology (e.g., PowerPoint slides) have a positive effect on student 
understanding in an undergraduate theoretical computer science course, compared to the use of a 
traditional (e.g., chalkboard) lecture style?” 

Taylor J. Smith Teaching Portfolio

E Sample Scholarship Materials

29



Annotated Bibliography 

1. Y. Inoue-Smith. College-based case studies in using PowerPoint effectively. Cogent Education, 
3:1-15, 2016. 

This paper examines the potential of PowerPoint as a tool to enhance traditional pedagogical techniques. 
Namely, the pedagogical technique under consideration in this paper is active learning, or the practice of 
engaging students during a lecture and allowing students to become involved with their own education. 
The paper takes a case study approach by considering the experiences of seven faculty members teaching 
across a variety of departments at an American university. All of the professors taught courses which are 
typically considered to belong to the general area of “liberal arts”. 

The paper focuses on a comparison between use of PowerPoint slides in a university lecture and students’ 
perceptions of PowerPoint slide use. The author observes that three of the seven lectures were taught in a 
large lecture hall, where it is difficult to engage with students using a traditional lecture style (i.e., no 
PowerPoint). The author posits that using PowerPoint in a large lecture can both grab students’ attention 
and help to structure lecture content, but slides should be written with the student in mind; teacher-
centered slides do not give students an idea of how to approach the material on their own. Participants in 
the study claimed that using PowerPoint helps with lecture organization, but the responsibility for student 
learning remains with the professor. Before a professor creates slides for a course, they must take care to 
set specific objectives to measure a student’s mastery of the material in the course. 

The author specifically highlights in the conclusion of the paper that “Teaching mathematics with 
PowerPoint is not common; instead, most professors still use chalkboards. Chalk allows the mathematics 
professor to unveil each equation or theorem step by step.” The author goes on to write that “PowerPoint 
is good for visually enriching the content and illustrating complex concepts”, but it is easy to fall into the 
trap of overloading students with information or rushing too quickly through a presentation. Given that 
many theoretical computer science courses involve the use and construction of diagrams (e.g., for 
drawing finite automata), PowerPoint may be a good tool to enhance the visual aspect of a lecture. 

2. C. Swati, T. Suresh, D. Sachin. Student assessment on learning based on PowerPoint versus 
chalkboard. International Journal of Recent Trends in Science and Technology, 13:347-351, 2014. 

This paper investigates the impact of PowerPoint slide use versus chalkboard use on student learning, and 
the lecture delivery preferences of students in a microbiology department. It is a cross-sectional, 
interventional study: data was collected over a period of one term, and two groups of students received 
two lectures on topics in microbiology. The first topic was considered to be “simple”, while the second 
topic was considered to be “complex”. The content of each lecture was the same across both groups, and 
the instructors of each group had the same teaching experience. For the first lecture, one group was taught 
via chalkboard while the other was taught via PowerPoint slides, and for the second lecture, the teaching 
methods for each group were swapped. Students in both groups completed a pre-test before each lecture 
and a post-test following each lecture to evaluate their understanding of the material, with both tests 
containing the same set of questions. 

The authors performed a statistical analysis on the pre-test and post-test performance data of both groups 
(hereafter referred to as “Group A” and “Group B”, as in the paper). For the first lecture, Group A was 
taught via PowerPoint while Group B was taught via chalkboard. The pre-test mean score difference 
between Group A and Group B was not statistically significant, as was the difference in mean score 
change from pre-test to post-test between Group A and Group B. The proportion of passing students on 
the post-test versus on the pre-test was significant for both groups. For the second lecture, the pre-test 
mean score difference was again not significant, but the difference in mean score change from pre-test to 
post-test between both groups was significant. The proportion of passing students on the post-test versus 
on the pre-test was more significant for Group A (chalkboard) than for Group B (PowerPoint slides). 

Taylor J. Smith Teaching Portfolio

30



The authors conclude that traditional lecture delivery is more effective than PowerPoint slide lecture 
delivery in terms of raw scoring and student pass results. The authors note that chalkboard use resulted in 
a stronger focus and better lecture structure than PowerPoint slide use for complex topics. Since many 
computer science students consider theory to be a “complex topic”, this study suggests that it may be a 
subject better suited for traditional lecture delivery. 

3. A. Savoy, R. W. Proctor, G. Salvendy. Information retention from PowerPoint and traditional 
lectures. Computers and Education, 52: 858-867, 2009. 

This paper investigates the effects of PowerPoint slide use in lecture on three aspects of student outcomes 
on examinations: auditory scores, graphic scores, and alphanumeric scores. The paper studies students in 
a course that is cross-listed between departments of psychology and industrial engineering. The course 
was designed for engineering majors with little background in psychology. The study ran over a period of 
one term, and consisted of two lectures on differing topics. Both lectures were presented using a 
combination of traditional delivery and PowerPoint slides. Students were assessed on lecture content 
using a quiz consisting of multiple-choice questions; questions about lecture content were divided into 
questions about information presented auditorily by the instructor, information presented auditorily with 
visual support, information presented graphically, and alphanumeric information (i.e., text). 

The authors conjectured that auditory information is difficult to recall when presented in conjunction with 
PowerPoint slides, and their findings showed that auditory scores with the traditional delivery style were 
15% higher than with the PowerPoint delivery style. In terms of graphic scores, the authors observed no 
notable gain when using PowerPoint slides versus traditional lecturing, but the scores of students who 
attended class were higher than the scores for students who did not attend class, suggesting that attending 
class offers a tangible benefit over simply reading PowerPoint slides or texts from home. Combining both 
audio and visual content, the authors found no significant difference in scores between PowerPoint 
lectures and traditional lectures, suggesting that there is no benefit to using PowerPoint when lectures 
consist mostly of text and simple graphics. The authors finally conjectured that students would prefer 
PowerPoint slides over traditional lectures; subjective data collected by the authors showed that students 
had no strong preference for either lecture style. 

This paper relates to Reference 2 in that both study a cross-section of students in a real-world lecture 
environment. However, given that the students in this study are engineering majors, their experience and 
personal inclinations may align more closely to the typical computer science student (i.e., they may be 
more technology-savvy). However, the fact that students in this study seemed not to have a strong opinion 
on PowerPoint lectures might suggest that technological ability does not translate to pedagogical 
preference. 

4. A. O’Dwyer. Responses of engineering students to lectures using PowerPoint. In Proceedings of 
the International Symposium for Engineering Education (ISEE 2008), pages 219-226, Dublin, 2008. 

This paper, much like Reference 3, investigates the responses of engineering students to PowerPoint-
based lectures versus traditional lectures. The authors survey three cohorts of engineering students across 
three different levels of study at one university. Between 65% and 75% of lecture time during the term 
involved use of PowerPoint across all three cohorts. Students were given a questionnaire at the end of the 
term where they were asked to compare lectures delivered using PowerPoint to lectures delivered in the 
traditional style (i.e., using chalkboards or overhead projector slides). 

The authors found that students across all cohorts identified the value of using PowerPoint slides, and 
indicated that PowerPoint lectures were both more interesting and facilitated greater learning. Students 
also indicated a preference for having lecture material online in the form of PowerPoint slides, as they can 
add notes to printed copies of slides as a form of active learning. Lastly, students claimed to have more 
motivation to attend PowerPoint-based lectures, but claimed to feel less bad about missing a PowerPoint-
based lecture over a traditional lecture.

Taylor J. Smith Teaching Portfolio

31


	Biographical Sketch
	Teaching Philosophy
	Teaching Responsibilities
	Course Instruction
	Instructional Apprenticeships
	Teaching Assistantships
	Curriculum Development
	Relevant Committee Service

	Evidence of Teaching Effectiveness
	Summary
	Honours and Awards
	Representative Feedback from Students
	Representative Feedback from Colleagues

	Professional Development
	Professional Development in University Teaching and Learning Program, Queen's University
	Fundamentals of University Teaching Program, University of Waterloo

	Course Descriptions
	Course Evaluations (Past 12 Months)
	Recent Course Outline
	Sample Course Materials
	Sample Scholarship Materials

