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1 Regular Operations and Regular Languages

In this lecture, we will begin our exploration into the theory of computation by investigating a rather simple
model of computation and determining the kinds of languages this model can recognize. Before we get to
defining our model, though, we will take a look at the languages themselves.

1.1 Regular Operations

Recall that, if we're given two sets A and B, we can apply certain operations to produce new sets. The
set operations we’re most familiar with are those of union, intersection, complement, and difference. Since
languages are essentially sets, we can similarly apply certain operations to languages in order to produce new
languages. Three operations in particular are so important that we give them a special name: the regular
operations.

Definition 1 (Regular operations). Let L, L1, and Lo be languages. Then the regular operations of union,
concatenation, and Kleene star are defined as follows:

e Union: L1 ULy ={w|w € Ly or w € La};
e Concatenation: LiLy = {wv | w € Ly and v € Lo}; and
e Kleene star: L* = J;5 Lt where L° = {¢}, L' = L, and L' = {wv |w € L*~! and v € L}.

The union operation, naturally, works in exactly the same way for languages as it does for sets. The other
two operations, on the other hand, don’t have an exact match to a set operation, but we can reason about
them by drawing analogies to other operations we’ve seen.

The concatenation operation is most similar to our notion of tuples, if we stripped away all of the sequence-y
notation; concatenation takes two words and “connects” the end of the first word to the beginning of the
second word.

Lastly, the Kleene star operation is somewhat similar to taking a repeated Cartesian product, if we “connect”
our elements (words) via concatenation rather than in a tuple. Note that, since the Kleene star allows us to
take zero copies of a word, the empty word € is always included in the resulting language.

Example 2. Let Ly = {a,b} and Ly = {d,e}. Then Ly U Ly = {a,b,d,e}, L1L2 = {ad, ae,bd, be},
T ={e,a,b,aa,ab,ba,bb,aaa, aab, ...}, and L} = {¢,d, e,dd, de, ed, ee,ddd, dde, ... }

1.2 Regular Languages

So, what makes these particular operations so special, and why do we refer to them as the regular operations?
As it turns out, taking just these three operations is sufficient to allow us to define the smallest class of
languages that is “interesting enough” to study’: the reqular languages.

IThere is a smaller class called the class of finite languages. However, it’s not too interesting: it consists only of languages
with a finite number of words. Introducing the Kleene star allows us to produce infinite-size languages.
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Definition 3 (Regular languages—language-theoretic def’n). Let ¥ be an alphabet. The class of regular
languages is defined inductively as follows:

1. The empty language, 0, is regular.

2. For each a € ¥, the language {a} is regular.

3. If Ly and Ly are regular, then Ly U Lo is regular.
4. If Ly and Lo are regular, then L; Lo is regular.

5. If L is regular, then L7 is regular.

At this point, you might be asking yourself: why do we call these operations and languages “regular”?
Stephen Kleene introduced the notion of a regular language in the 1950s, but his justification for the termi-
nology was basically that he couldn’t come up with any better name:

“We would welcome any suggestions as to a more descriptive term.”
— Stephen Kleene, Representation of Events in Nerve Nets and Finite Automata
RAND Corporation Research Memorandum RM-704, 1951.

Keep the definition of the class of regular languages in mind as we go forward. It will reappear once we
introduce our chosen model of computation in this lecture.

2 Finite Automata

The entire point of studying computer science, some might argue, is to determine exactly what computers
are capable of. Indeed, humans created computers so that we could pass off boring or repetitive work onto
a machine and give our brains a break! However, considering a full computer in the very beginning of our
studies is kind of like learning to swim by jumping into the deep end of a pool. In order to learn without
getting overwhelmed, we will begin by considering a very simple model of computation that gives us just
enough power to actually perform an elementary computation.

If you’ve ever used a vending machine, or waited in a car at a traffic light, or walked through an automatic
door, then you'’re already familiar with the notion of a finite automaton. Consider, for example, how an
automatic door works:

sensor activated
by person

door door
closed open

sensor inactive
for 5 seconds

The door transitions between two states—closed and open—depending on what the sensor is reporting. The
states (circles) represent the door’s current status, and the transitions (arrows) correspond to an input given
to the door. Note that the door has no way of knowing or remembering that it’s closed or open apart from
being in a state; it responds solely based on the input it receives from the sensor. This is a finite automaton:
an automaton in the sense that it’s a machine that performs an action based on predetermined conditions
or instructions, and finite in the sense that there’s a finite number of possible states the machine can be in
at a given time.

2.1 Definition

We can use finite automata to model simple computations that take some input word and don’t require
memory or storage. In a computation, the states of the finite automaton correspond to our current step of
the computation. For example, did we just begin the computation, or are we midway through reading some
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input, or something else? The transitions of the finite automaton take us between states, depending on the
label of the transition. If we have, say, a binary word as the input to our finite automaton, then we can
transition to a different state depending on whether the next symbol in the word is a 0 or a 1.

Formally speaking, a finite automaton is just a 5-tuple.

Definition 4 (Finite automaton). A finite automaton is a tuple (Q, %, 6, qo, F'), where
e () is a finite set of states;
e Y is an alphabet;
e ): Q XX — (@ is the transition function;
e ¢y € Q is the initial or start state; and
e F C (@ is the set of final or accepting states.

We're already familiar with states and alphabets, and we know a little bit about transitions from our example.
The transition function d is the mathematical formalization of the arrows in our diagram. Given an ordered
pair of state and symbol being read, the transition function tells us which state to go to next. For example,
if we had a very simple finite automaton like

a
start @

then the single transition would be represented by the function §(go, a) = ¢1. If a given finite automaton has
a large number of transitions, then we can represent each transition concisely in a table format rather than
writing each transition out individually.

Note that, since we're dealing with a transition function, any pair of state and symbol can map to at most
one state. This condition ensures that we always make the same transition on the same state/symbol pair.

You may have also noticed that the states in our very simple finite automaton had some special flair added
to them. The state gy has an arrow labelled “start” pointing to it, and the state ¢; has two circles instead of
one. This is how we denote initial and final states in our diagram. Initial states have an incoming transition
arrow pointing at the state, while final states are double-circled. We typically have just one initial state in
a finite automaton, but it’s possible to have more than one. On the other hand, we can have as many or as
few final states as we want.

Example 5. Consider the finite automaton M; = (@, X, d, qo, F') where Q = {qo,q1}, £ = {0,1}, qo is the
initial state, F' = {q1}, and 0 is defined as follows:

This finite automaton checks whether a binary word has odd parity; that is, whether it contains an odd
number of 1s.



CSCI 356: Theory of Computing
Lecture 1, Fall 2021 Page 4

Example 6. Consider the following diagram of a finite automaton:

This finite automaton checks whether every occurrence of b in an input word is immediately followed by an
occurrence of c.

Based on this diagram, we can establish that Q = {qo,q1,¢2}, ¥ = {b, c}, qo is the initial state, F = {qo},
and ¢ is defined as follows:

2.2 Computations: Inputs, Acceptance, and Rejection

Now that we know how to define a finite automaton, what can we do with it? Observe that, in our definition,
we took care to specify the alphabet ¥. This alphabet gives us information about the kinds of input words
we can give to a finite automaton. Giving an input word to a finite automaton is much like typing input ()
in a Python program or scanf () in a C program; it gives the computer something to read and work with.

When a finite automaton is given an input word, we can imagine the word is written on a reel of film where
each symbol in the word has its own frame.

Now, imagine the finite automaton is a film projector, but the rewind button is broken. When we play the
film reel starting at the first frame, the projector can only show one frame at a time, and once it moves to
the next frame it can never return to the previous one. This is essentially how a finite automaton processes
its input: starting with the first symbol of the input word, the finite automaton reads the symbol, transitions
to a state, and then moves to the next symbol.

Once the finite automaton reaches the end of its input word, it must make a decision to either accept or
reject the word. Whether or not the finite automaton accepts the input word depends entirely on the state
the finite automaton is in at the moment it reaches the end of the word. If the finite automaton is in a final
state and it has no more symbols left to read, then it accepts the word. Otherwise, the finite automaton
must be in a non-final state, and it therefore rejects the word.

The set of all input words that a finite automaton M accepts is called the language of the finite automaton,
denoted L(M), and it’s just like any other language: it consists of words over the alphabet X. If a finite
automaton M accepts (or recognizes®) a language A, then L(M) = A. Note that, even though a finite
automaton can accept many input words, it can only recognize one language.

2For clarity’s sake, I will try to use the word “accept” only when referring to input words given to a finite automaton, and
I will use “recognize” when referring to the language of a finite automaton.
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Example 7. Let ¥ = {a,b}, and consider the language
Ljyj,<1 = {w | w contains at most one occurrence of the symbol b}.

This language can be recognized by the following automaton:

If the input word w contains zero bs, then the finite automaton will remain in the final state qy. Likewise, if
w contains one b, then the finite automaton will enter and remain in the final state ¢;. Only if w contains
two or more bs does the finite automaton enter the state go, where it becomes “stuck” and can no longer
accept the input word.

Example 8. A finite automaton with no final states is still able to recognize one language: the empty
language, (. This is because the language of input words accepted by the finite automaton is empty.

As a matter of notation, we will refer to the class of languages recognized by some finite automaton by the
abbreviation DFA. (What does the D mean? We'll find out in the next section. . .)

We wrap up this section by precisely defining what it means for a finite automaton to accept an input word;
that is, by formalizing the notion of an accepting computation. We don’t need anything new to do this; we
already have all the machinery we need.

Definition 9 (Accepting computation of a finite automaton). Let M = (Q, X, d, go, F’) be a finite automaton,
and let w = wowy ... wy,_1 be an input word of length n where wg, w1, ...w,_1 € X. The finite automaton

M accepts the input word w if there exists a sequence of states rg,71,...,7, € @ satisfying the following
conditions:

1. 79 = qu;

2. §(riy,w;) =riyq for all 0 < i < (n —1); and

3. rp €F.

Now that we have the formal notions of a finite automaton and an accepting computation, we can provide
an alternative definition of what it means for a language to be regular.

Definition 10 (Regular languages—automata-theoretic def’n). If some finite automaton M recognizes a
language L, then L is regular.

2.3 Nondeterminism

Remember how, when we were discussing the transition function earlier, we mandated a condition that
any pair of state and symbol must map to at most one state? This condition ensured that if we gave the
same input word to the same finite automaton, we would end up with the same result. This is known as
deterministic computation. (And now you know what the D in DFA stands for!)

While determinism isn’t inherently a bad thing, it can unfortunately make our job harder if we're trying to
construct a finite automaton that recognizes certain “difficult” languages. For example, suppose we wanted to
construct a deterministic finite automaton that recognizes the language of words over the alphabet ¥ = {0, 1}
where the third-from-last symbol is 0. This finite automaton should accept input words like 011, 10010, and
1010001010011000, but it should reject input words like 110 or 01. Sounds easy to do, right? After all, we
really just need to check one symbol: the symbol in the third-from-last position. As it turns out, however,
this is the deterministic finite automaton in question:
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start —{ 4o

Keep in mind also that this deterministic finite automaton only works for input words where the third-from-
last symbol is 0. If we wanted to, say, check the fourth-from-last symbol, we would need to construct a whole
new finite automaton—and this one would have twice as many states as our previous one!

So, how do we make our job easier and our finite automata smaller? We get rid of the determinism condition.
Specifically, we allow for state/symbol pairs to map to one or more states. (We're able to preserve the
“function” part of our transition function by mapping each state/symbol pair not to multiple different
states, but rather to an element of the power set of states. We’ll clarify this in the definition.)

If we get rid of the determinism condition, then the finite automaton can, in a sense, “guess” which step to
take at certain points in the computation. If, in a given state, there is more than one transition out of that
state on the same symbol, then the finite automaton has multiple options for which transition it can take.
As you might have guessed, this is called nondeterminism, and the definition of a nondeterministic finite
automaton is nearly identical to our earlier definition of a deterministic finite automaton.

Definition 11 (Nondeterministic finite automaton). A nondeterministic finite automaton is a tuple (Q, X, d, qo, F),
where

e () is a finite set of states;

e ) is an alphabet;

e 0: Q XX — P(Q) is the transition function;

® gy € @ is the initial or start state; and

e I C (@ is the set of final or accepting states.

As you can see, the only change we had to make to the definition is in the transition function, where we
now map to the power set P(Q) instead of the state set ). The element of the power set being mapped to
is exactly the subset of states that the nondeterministic finite automaton can transition to from its current
state and on its current symbol.

As an illustration of how nondeterminism can simplify the finite automata we construct, think back to our
example of the language of words whose third-from-last symbol is 0. Here is the nondeterministic version of
the finite automaton recognizing this language:

0,1

0 0
0
son (0 )2 T )
1 1
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Here, the state ¢q is doing double duty: not only is it reading all of the symbols in the input word up to the
third-from-last symbol, but it’s also checking that the third-from-last symbol is in fact 0. If it is, then we
transition from state go to state ¢i, and the remaining states simply read the last two symbols (whatever
they may be).

The nondeterminism in this machine is limited to state qp, where we have two outgoing transitions on the
same symbol O: one transition loops back to the same state qg, while the other transition takes us to state
q1. We can represent this with the transition function by writing 6(qo,0) = {qo, ¢1}, and this abides by our
definition since {qo,q1} € P(Q).

Example 12. The following finite automaton is nondeterministic, because some states have multiple out-
going transitions on the same symbol:

A nondeterministic finite automaton accepts an input word in exactly the same way as a deterministic finite
automaton: if the finite automaton is in a final state and there are no more symbols of the input word left
to read, then the input word is accepted. If not, then the input word is rejected. We will refer to the class
of languages recognized by some nondeterministic finite automaton by the abbreviation NFA.

The computation of a nondeterministic finite automaton, however, is slightly different than in the deter-
ministic case. Since the finite automaton can take potentially many transitions from one state/symbol pair,
at such a point in the computation, the finite automaton “splits up” and runs multiple copies of itself in
parallel. If we were to visualize such a computation, we would obtain a diagram that resembles a tree. (In
fact, such a visualization is called a computation tree.) In each branch of the computation, the corresponding
copy of the finite automaton continues its computation until it either reaches the end of the input word or
finds itself with no more transitions to follow (which could happen if the finite automaton reads a symbol in
a state with no outgoing transition on that symbol). In the latter case, that branch dies while the remaining
branches continue with their computations. Similarly, if there are no more symbols to read in the input
word and that copy of the finite automaton isn’t in a final state, that branch dies. A computation of a
nondeterministic finite automaton is accepting only if there exists at least one branch of the computation
where the finite automaton is in a final state after reading every symbol of the input word.

Example 13. Recall the nondeterministic finite automaton from the previous example. Does this automaton
accept the input word 100107 Let’s check by drawing the computation tree. Each vertex indicates the current
state of the finite automaton at that point in the computation, and the symbols remaining in the input word
are listed on the right.
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10010

0010

010

10

Since there exists at least one branch of the computation tree where the finite automaton is in a final state
after reading the entire input word, the finite automaton accepts the word 10010.

We can formalize the notion of an accepting computation once again for nondeterministic finite automata;
the only change we need to make is in the second condition.

Definition 14 (Accepting computation of a nondeterministic finite automaton). Let M = (Q, %, 0, qo, F)
be a nondeterministic finite automaton, and let w = wow; ...w,_1 be an input word of length n where
Wg, W1, ... W,_1 € 2. The finite automaton M accepts the input word w if there exists a sequence of states
70,T1,---,Tn € Q satisfying the following conditions:

L. 70 = qo;
2. 141 € 8(ry,w;) for all 0 <4 < (n—1); and
3. r, € F.

Going one step further, we can take a nondeterministic finite automaton and modify it so that it can
transition not just after reading a symbol, but whenever it wants. If a certain special transition called an
epsilon transition exists between two states g; and g;, a finite automaton in state g; can immediately transition
to state g; without reading the next symbol of the input word. We call such a model a nondeterministic
finite automaton with epsilon transitions, and the class of languages recognized by this model is denoted by
e-NFA.

Example 15. The following nondeterministic finite automaton uses epsilon transitions:

st —( 0 )—2—(a = )2}

This finite automaton accepts all input words starting with zero, one, or two as followed by at least one b.
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Example 16. The following nondeterministic finite automaton uses epsilon transitions:

This finite automaton recognizes the languages of signed or unsigned floating-point numbers. Some words
in this language include 365.25E+2, -10E40, +2.5, and 42E-1. The epsilon transitions allow for words to
omit the decimal portion of the number, the sign in the exponent, or both.

Note that adding an epsilon transition to a deterministic finite automaton inherently makes it nondetermin-
istic. This is because we’ve given the finite automaton the option to transition between two states with or
without reading a symbol. There cannot exist a “deterministic finite automaton with epsilon transitions”.

We won'’t spend too much time discussing the details of nondeterministic finite automata with epsilon
transitions, since the model is so similar to the usual nondeterministic finite automaton model. However, we
mention it now because it will make some future constructions and proofs much easier for us.

2.4 «NFA = NFA =DFA

By now, we've learned about three different models of computation: deterministic finite automata, non-
deterministic finite automata, and nondeterministic finite automata with epsilon transitions. Going from
deterministic to nondeterministic models, we saw that we can construct finite automata that recognize the
same language and are easier to understand (for instance, by virtue of having fewer states or transitions).
By introducing epsilon transitions, we learned that we don’t even necessarily need to read symbols in order
to transition from one state to another. It seems that this ongoing weakening of conditions keeps giving us
models that can “do more”. You may be surprised to learn, however, that all of these models of computation
are equivalent in terms of the languages they can recognize! No matter what flavour of finite automaton we
have, we can still only recognize the same class of languages.

We will prove this equivalence in two steps, by giving two procedures to convert from a nondeterministic finite
automaton with epsilon transitions to one without and to convert from a nondeterministic finite automaton
to a deterministic finite automaton.

In our first procedure, we will use the notion of epsilon closure to remove epsilon transitions from a non-
deterministic finite automaton. The epsilon closure of a state ¢ is the set of states where there exists some
sequence of epsilon transitions from ¢ to that state. Note that the epsilon closure of ¢ always includes ¢
itself.

Theorem 17. Given a nondeterministic finite automaton with epsilon transitions M, we can convert it to
a nondeterministic finite automaton M’ without epsilon transitions.

Proof. Let M = (Q,X%,6,qo, F) be a nondeterministic finite automaton with epsilon transitions. We will
construct an equivalent nondeterministic finite automaton M’ = (Q’, 3,8, ¢, F') without epsilon transitions
in the following way:

1. Take @’ to be the original state set @, and remove all states having only epsilon transitions to that
state. The starting state is not removed, so take g = go. All final states in M remain final states in
M’ unless they were removed.

2. Take 6’ to be the original transition function §, but with all epsilon transitions removed. For all states
removed in the previous step, also remove all transitions from that state.
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3. Add new transitions to the transition function 8’ as follows:

o If there exists a “chain” of transitions in M beginning at a state g; and ending at a state g;,
where all but the last transition is an epsilon transition and the last transition is on some symbol

then replace this “chain” in M’ with a single transition on a between ¢; and g, .
OO

e If there exists a “chain” of epsilon transitions in M beginning at a state ¢; and ending at a final

state q5 € I,

then remove this “chain” from M’ and make ¢; a final state.

In this way, we have constructed a nondeterministic finite automaton without epsilon transitions recognizing
the same language as the original finite automaton. O

Example 18. Consider the following nondeterministic finite automaton with epsilon transitions (highlighted
in red):

We will use our construction to convert this to a nondeterministic finite automaton without epsilon transi-
tions.

1. First, we take our state set Q" and our initial state ¢. Since there are no states in this finite automaton
having only incoming epsilon transitions, we don’t need to remove any states.

2. Next, we take our transition function §’ with all epsilon transitions removed. We don’t need to remove
any other transitions from removed states, since we had no such states in the previous step.

3. Now, we add new transitions to ¢’ by considering any “chains” in the original finite automaton:
e For epsilon transition chains ending in a transition on a symbol, we have the following:

— q1 5 qo > ¢ is replaced by ¢1 S oq



CSCI 356: Theory of Computing
Lecture 1, Fall 2021 Page 11

€ d . d
— q1 = qo — qo is replaced by ¢ — qo;
— g2 = 1 = g0 is replaced by ¢a = go;
- Sq LN q1 is replaced by g2 LN q1; and
€ € d . d
— @2 — g1 = qo — qo is replaced by g2 — qo.
e For epsilon transition chains ending at a final state, we have the following;:
— g2 = q1, so state g2 becomes a final state.

Adding these transitions and final states produces our nondeterministic finite automaton without
epsilon transitions:

In our next procedure, we will see a way to “simulate” nondeterminism in a deterministic finite automaton.
Recall that, in a nondeterministic finite automaton, the transition function maps state/symbol pairs to an
element of P(Q). We can get around the issue of having multiple transitions from one state on the same
symbol not by changing our transitions, but by changing our set of states: we simply need to create one
state corresponding to each element of P(Q)!

Theorem 19. Given a nondeterministic finite automaton N, we can convert it to a deterministic finite
automaton N’.

Proof. Let N = (Q,%,8,qo, F) be a nondeterministic finite automaton. (We assume that N contains no
epsilon transitions; if it does, then use the construction of Theorem 17 to remove the epsilon transitions.)
We will construct a deterministic finite automaton N’ = (Q',3,d, ¢b, F’) in the following way:

1. Take Q' = P(Q); that is, each state of N’ corresponds to a subset of states of A/. Note that our
deterministic finite automaton may not need to use all of these states; usually, we omit any inaccessible
states to make our diagram easier to follow.

2. For each ¢’ € Q" and a € &, take ¢'(¢,a) = {qg € Q| ¢ € (s, a) for some s € ¢'}.

(This is perhaps the most difficult step of the construction. Remember that each state ¢’ of A’
corresponds to a subset of states of N. Thus, when N’ reads a symbol a in state ¢/, the transition
function ¢’ takes us to the state corresponding to the subset of states g of A/ that we would have
transitioned to upon reading a in some state s of A/, where s is in the subset corresponding to ¢’.)

3. Take q) = {qo}; that is, the initial state of N corresponds to the subset containing only the initial
state of V.

4. Take F' = {q¢’ € Q' | ¢ corresponds to a subset containing at least one final state of N'}. In this way,
N’ accepts only if N would be in a final state at the same point in its computation.

In this way, we have constructed a deterministic finite automaton recognizing the same language as the
original finite automaton. O

The procedure allowing us to convert from nondeterministic to deterministic finite automata is known as
the subset construction, because each state of our deterministic finite automaton corresponds to a subset of
states from the original nondeterministic finite automaton.
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For step 2 of the conversion process, we may obtain the transition function of our deterministic finite
automaton N using a tabular method. With this method, we perform the following steps:

1. Construct a table where the rows are the states of A" and the columns are the symbols of the alphabet
3.

2. For each state g; and symbol a, write the set of states mapped to by d(g;,a) in the corresponding
row/column entry.

3. After all entries are filled, take all sets of states listed in the table that don’t yet have their own row,
and create a new row corresponding to that set of states.

4. Repeat steps 2 and 3 until no new rows can be added to the table.

Example 20. Consider the following nondeterministic finite automaton, with nondeterministic transitions
from a state highlighted in red:

We will use our tabular construction method to obtain the transition function of our desired deterministic
finite automaton. Our initial table looks like the following:

‘abcd

q0
q1
q2

We fill in the initial table entries by consulting the transition function of A, where — denotes no transition:

‘ a b c d
qo0 | 90 {Q17 (I2} — —
Q| — — {e0, 1} @
q2 | 41 — - q2

Note that there are now two entries in our table without corresponding rows: {qo,q1} and {q1,¢2}. We
proceed to add these entries as rows to our table and we fill in the entries for these new rows:

a b c d

q a0 {a1, ¢} —

q1 — - {Qm 611} q2
q2 q1 — — q2
{90, 01} | @0 {a1,¢2} {2001} @
{a, 2} | @ - {00, 11} @

After filling in these new entries, we find that all entries now have corresponding rows, so our table construc-
tion is complete. We can now use this table to construct our deterministic finite automaton! Each row of the
table corresponds to an accessible state of our deterministic finite automaton, and the table itself specifies
our transition function.
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Our resultant deterministic finite automaton is the following;:

a c d

Note that we don’t need to come up with procedures for the other direction of conversion: a deterministic
finite automaton is already a nondeterministic finite automaton that doesn’t use nondeterminism, and a
nondeterministic finite automaton is a “nondeterministic finite automaton with epsilon transitions” that
doesn’t use any epsilon transitions.

Since we now have methods to convert between all three of our models, we can conclude that they are all
equivalent in terms of recognition power.

2.5 Closure Properties

Closure properties are an important consideration when we discuss any model of computation, since it allows
us to determine whether we can apply certain operations to words or languages while still allowing the model
to accept or recognize the result.

We say that a set S is closed under an operation o if, given any two elements a,b € .S, we have that aob € S
as well. You might be familiar with the notion of closure from elsewhere in mathematics: for example, the set
of integers is closed under the operations of addition, subtraction, and multiplication, since for all integers a
and b, we know that a + b, a — b, and a x b are integers. On the other hand, the set of integers is not closed
under the operation of division, since (for example) 1,2 € Z but 1/2 ¢ Z.

We can prove all kinds of closure results for languages recognized by finite automata, but here we will focus
on three results in particular. In each result, we will follow the same general style of proof to show closure
under the specified operation o: given two finite automata M and N recognizing languages L(M) and L(N),
we will construct a new finite automaton recognizing the language L(M) o L(N).

We begin by considering the regular operation of union.
Theorem 21. The class e-NFA is closed under the operation of union.

Proof. Suppose we are given two nondeterministic finite automata with epsilon transitions, denoted A =
(Ra, 2,604,004, Fa) and B = (Qp, X, 05,q0,s, Fg). We construct a finite automaton C recognizing the lan-
guage L(A) U L(B) in the following way:

e Take Qc = QAU QBU{g}
o Take go, = qo.



CSCI 356: Theory of Computing
Lecture 1, Fall 2021

Page 14
e Take Fp = F 4 U Fg.
e Define d¢ such that, for all ¢ € Q¢ and for all a € ¥ U {e},
dalg,a)  ifg€Qu;
éc(g,a) = dp(g,a)  if ¢ € Qp; and
{904,905} ifg=qoand a=ce.
L]

Diagrammatically, the “union” finite automaton C looks like the following:

start

Next, we consider the operation of concatenation.
Theorem 22. The class e-NFA is closed under the operation of concatenation.

Proof. Suppose we are given two nondeterministic finite automata with epsilon transitions, denoted A =

(Qa,%,04,q90,,F4) and B = (Qp, X, 08,905, FB). We construct a finite automaton C recognizing the lan-
guage L(A)L(B) in the following way:

o Take Q¢ = Q4 UQp.

e Take go, = qo,-

e Take Fp = Fg.

e Define d¢ such that, for all ¢ € Q¢ and for all a € X U {e},

64(g;a) if g€ Qaand g ¢ Fy;
Selq,a) = da(q,a) ifge Fq and a # ¢
el a)= da(q,a)U{qo,} ifq€ Fyanda=c¢e and
05(q, a) if g € Qp.

Diagrammatically, the “concatenation” finite automaton C looks like the following:
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For this last result, pertaining to the Kleene star, we are considering just one finite automaton instead of
two, but the same general style of proof applies.

Theorem 23. The class e-NFA is closed under the operation of Kleene star.

Proof. Suppose we are given a nondeterministic finite automaton with epsilon transitions, denoted A =
(QAa,%,04,40,,Fa). We construct a finite automaton A’ recognizing the language L(A)* in the following
way:

o Take Q= QaU{qo}.

e Take 40 ,, = qo-

e Take Fur = {qo}.

e Define ¢ 4/ such that, for all ¢ € Q 4+ and for all a € ¥ U {¢},

6a(q, a) ifge Qaand q & Fu;
Sa(q,a) da(q,a) if g € Fyq and a # €;
/ 7(1 = .
A d4(q,a)U{qy} ifq€ Fqand a=¢; and
{q0.4} if g=¢qo and a = .

Diagrammatically, the “Kleene star” finite automaton A’ looks like the following:

Since we know how to convert between all of our models, we naturally get that the classes NFA and DFA are
also closed under each of the union, concatenation, and Kleene star operations.

Recall, though, that we referred to each of these operations by a special name: the regular operations.
Moreover, we said that any language that can be constructed using these regular operations was a regular
language. Since all of our finite automaton models are closed under the regular operations, we arrive at the
first truly exciting result of this lecture: finite automata recognize exactly the class of regular languages.

Theorem 24. A language A is regular if and only if there exists a deterministic finite automaton M such
that L(M) = A.

Proof. (=): To prove this direction of the statement, we need to construct a deterministic finite automaton
for each of the five “basic” regular languages specified in Definition 3.

We already know how to construct a finite automaton for each of the union, concatenation, and Kleene star
languages from the proofs of Theorems 21, 22, and 23; we just need to take the extra step of converting the
finite automata from each of those proofs to their deterministic equivalent. Thus, it suffices to construct
deterministic finite automata for the remaining regular languages: the empty language () and the singleton
language {a} for each a € X.

The empty language ) is recognized by the following deterministic finite automaton:

start —>
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For all a € ¥, the singleton language is recognized by the following deterministic finite automaton:

a
start @

(«<): This direction of the statement is trivially true, by Definition 10. O

3 Regular Expressions

If you frequently use a Unix-based system with a terminal, you may be familiar with utilities such as grep,
which searches an input text file for lines that match a specified format. For example, on my computer, I
can search the dictionary file (/usr/share/dict/words) for all words that contain “theory”:

taylor@SmithBook:”> grep theory /usr/share/dict/words
countertheory

theory

theoryless

theorymonger

But, to be fair, doing something like that is a bit overkill when one could just open the file in a text editor
and use the Find tool to search for the word “theory”. Where grep really shines is when we need to search
for text matching a pattern, like so:

taylor@SmithBook:"> grep “u.*xity$ /usr/share/dict/words
ubiquity

ultimity

ultrafilterability

usability
utility
utterability
uxoriality

In this example, I searched for all words in /usr/share/dict/words that began with a u and ended with
ity, such as university. The ubiquity of this pattern in the English language is evident:

taylor@SmithBook:”> grep “u.*ity$ /usr/share/dict/words | wc -1
235

Utilities like grep use patterns to perform fast searches in text files, and we can formalize the notion of a
pattern in terms of our familiar regular operations. This formalization is known as a regular expression.

3.1 Definition

To define regular expressions, let us recall our first characterization of regular languages from Definition 3.
We stated that a language was regular if we could represent it in terms of five “components”: the empty
language, 0; the singleton language {a} for all a € X; the union operation; the concatenation operation; and
the Kleene star operation. To define regular expressions, we really don’t need to make any big changes to
this characterization, apart from thinking about symbols instead of languages!



