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1 Grammars and Context-Free Languages

Recall that, in our discussion on regular languages, we introduced the notion of a regular expression. This
expression essentially performed a kind of pattern matching to accept words of a certain form and reject
words not of that form.

We can take this rough idea of matching patterns in words and modify it to work not just for symbols within
each word, but for the structure and composition of the word itself. We are able to do so using the notion
of grammars, which essentially provide a set of rules that we can follow to produce words that belong to a
certain language. (Note that, while we used regular expressions to match a given word, we use grammars
to produce a new word.) If a grammar produces words that belong to a certain language, then we say the
grammar generates that language.

The idea of using grammars with languages is nothing new; linguists have been using grammars to study
natural languages for centuries, dating as far back as the fourth century bce with the work of the Indian
grammarian Pān. ini. Only with the advent of computer science itself has the notion of grammars been
applied to formal languages and programming languages, starting with the work of American linguist Noam
Chomsky in the 1950s.

While we didn’t mention it in the previous lecture, there exists the notion of a regular grammar, which
corresponds exactly to the class of regular languages. The rules of a regular grammar take on one of the
following forms:1

1. A ! ✏;

2. A ! a for some a 2 ⌃; and

3. A ! aB for some a 2 ⌃.

In each rule, the lowercase letters correspond to alphabet symbols and the uppercase letters correspond to
other rules that we can use to produce more symbols of the word. In particular, though, observe how we can
associate each rule with the action a finite automaton takes when reading an input word: Rule 1 corresponds
to reading no symbol (e.g., while following an epsilon transition), Rule 2 corresponds to reading the last
symbol of the word, and Rule 3 corresponds to reading some symbol of the word and transitioning to another
state to read the next symbol.

However, this lecture isn’t about regular grammars! We already have a number of ways to represent regular
languages, and we know also that there exist some non-regular languages. Thus, instead of dwelling on the
regular languages, here we will take our first look at a larger class: the class of context-free languages.

1.1 Context-Free Grammars

If you look at the specification manual for any programming language, you will likely find tucked away
somewhere in the documentation a grammar for that language. This grammar, which could number into the
tens of pages, describes precisely what the structure of a program written in that language should look like.
Indeed, this grammar is exactly what the language compiler uses to check for syntax errors in your program!

1Strictly speaking, these rules define the class of right-linear regular grammars. A similar set of rules exists for left-linear
regular grammars, but both types of grammars generate the regular languages.
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As an example, let’s consider one small excerpt from the grammar given in the third edition of the Java
Language Specification:

Statement:
Block
assert Expression [ : Expression] ;
if ParExpression Statement [else Statement]
for ( ForControl ) Statement
while ParExpression Statement
do Statement while ParExpression ;
try Block ( Catches | [Catches] finally Block )
switch ParExpression { SwitchBlockStatementGroups }
synchronized ParExpression Block
return [Expression] ;
throw Expression ;
break [Identifier]
continue [Identifier]
;
StatementExpression ;
Identifier : Statement

This part of the Java grammar checks statement blocks such as assignments, if-else blocks, for loops, and
so on. All of the words written with an Uppercase letter or written in CamelCase correspond to rules, and
all of the words written in lowercase correspond to language keywords. For example, the if rule on the
fourth line checks that every if-else block in a program conforms to the syntax that the compiler expects: the
block begins with the keyword if together with some parenthesized expression, followed by some statement
or sequence of instructions, and ending with an optional else block.

This Java grammar is an example of a context-free grammar. Like the regular grammars we saw earlier, a
context-free grammar consists of a set of rules that we can use to generate valid programs in Java. Unlike
regular grammars, however, these rules take on a much more general form: for example, we can replace the
Statement rule with any combination of keywords and other rules, as specified by that part of the grammar.

Before we look at some other examples, let’s formalize the notion of a context-free grammar.

Definition 1 (Context-free grammar). A context-free grammar is a tuple (V,⌃, R, S), where

• V is a finite set of elements called nonterminal symbols;

• ⌃ is a finite set of elements called terminal symbols, where ⌃ \ V = ;;

• R is a finite set of rules, where each rule consists of a nonterminal on the left-hand side and a combi-
nation of nonterminals and terminals on the right-hand side; and

• S 2 V is the start nonterminal.

In a context-free grammar, the set of nonterminal symbols V correspond to parts of a word that we have yet
to “fill in” with terminal symbols from ⌃. The set of rules R tell us how we can perform this “filling in”. If
we have a rule of the form A ! ↵, then we can replace any instance of A in our word with the symbol ↵.
The start nonterminal S is self-explanatory; it is the first thing in our word that we “fill in”.

Returning to our Java grammar example, we can see that (for example) some of the nonterminals in the
grammar include Statement, Block, Identifier, and ParExpression, while some of the terminals include
if, while, for, and ; (semicolon).

Importantly, we have in our definition of a context-free grammar that ⌃\V = ;; that is, the set of terminals
and the set of nonterminals must be disjoint. This is to prevent the grammar from confusing terminals
and nonterminals. (Incidentally, this is why the Java language designers used uppercase letters in their
nonterminals and lowercase letters in their terminals.)
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The sequence of rule applications we follow beginning with the start nonterminal S and ending with a
completed word containing symbols from ⌃ is called a derivation. Each word of the form (V [⌃)⇤ produced
during a derivation is sometimes referred to as a sentential form.

For any nonterminal A and terminals u, w, and v, if we have a rule A ! w in our grammar and some step
of our derivation takes us from uAv to uwv, then we say that uAv yields uwv and we write uAv ) uwv.
We can represent a sequence of “yields” relations using similar notation; given words x and y, if x = y or if
there exists a sequence x1, x2, . . . , xk where k � 0 such that

x ) x1 ) x2 ) · · · ) xk ) y,

then we write x )⇤ y. (This is very similar to the Kleene star notation, where the star indicates zero or
more “yields” relations taking us from x to y.)

Example 2. Consider the context-free grammar where V = {S,A}, ⌃ = {a, b}, and R contains two rules:

S ! aAb

A ! aAb | ✏

Using this context-free grammar, we can generate words like

S ) aAb ) a ✏ b = ab,

S ) aAb ) a aAb b ) aa ✏ bb = aabb, and

S ) aAb ) a aAb b ) aa aAb bb ) aaa ✏ bbb = aaabbb,

and so on. For each step, the highlighted symbols indicate which symbols were added at that step. As we
can see, this context-free grammar generates all words over the alphabet ⌃ = {a, b} where the number of as
is equal to the number of bs, there is at least one a and one b, and all as come before bs in the word.

Observe that our rule A in Example 2 included a vertical bar. This is simply a shorthand for writing multiple
rules where each rule contains A on the left-hand side. Writing A ! aAb | ✏ is therefore equivalent to writing

A ! aAb

A ! ✏

There are very few limitations we must abide by when we write rules for a context-free grammar. All we need
to ensure is that the left-hand side of each rule consists of exactly one nonterminal by itself. The right-hand
side of each rule can contain any combination of terminals and nonterminals, including the empty word ✏.

Example 3. Consider the context-free grammar where V = {S}, ⌃ = {(, )}, and R contains one rule:

S ! (S) | SS | ✏

This rule allows us to surround an occurrence of S with parentheses, to “duplicate” an occurrence of S, or
to replace some occurrence of S with ✏, e↵ectively removing that occurrence of S from the derivation.

Using this context-free grammar, we can generate a word like

S ) SS ) (S) S ) ( (S) )S ) (( ✏ ))S ) (())S ) (()) (S) ) (())( ✏ ) = (())().

Again, the highlighted symbols indicate which symbols were added at a given step. This context-free grammar
generates all words over the alphabet ⌃ = {(, )} where each word contains balanced parentheses: every
opening parenthesis is matched by a closing parenthesis, and each pair of parentheses is correctly nested.
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We can define the language of a grammar G over an alphabet ⌃ by L(G) = {w 2 ⌃⇤ | S )⇤ w}. Thus, in
Example 2, the language of the grammar is La=b = {anbn | n � 1}. Likewise, in Example 3, the language of
the grammar is L() = {w 2 {(, )}⇤ | all prefixes of w contain no more )s than (s, and |w|( = |w|)}.2

Finally, in case you’re wondering why we refer to these grammars as being context-free: the name stems from
the fact that, given a rule of the form A ! ↵, we can replace any occurrence of A with ↵ without looking at
the context around A; that is, without looking at the symbols to the left and right of A. Thus, the grammar
is free of context when we apply a given rule.

1.2 Ambiguous Context-Free Grammars

If we are given a derivation of a word for some context-free grammar, we need not always represent it in a
linear fashion like we did in the previous examples. We could alternatively represent it visually as a tree
structure, where the root of the tree corresponds to the starting nonterminal S and each branch of the tree
adds a new nonterminal or terminal symbol. We refer to such trees as parse trees.

Parse trees are nothing new to linguists; the idea is used all the time to break down sentences or phrases
into their constituent components, like nouns, verbs, and so on. In doing so, linguists are able to study the
structures of sentences in di↵erent languages. For example, consider the following parse tree for an English
sentence:

S

NP

Det

the

Nom

Adj

intelligent

Nom

N

professor

VP

V

illustrated

NP

Det

a

Nom

Adj

beautiful

N

tree

Here, the sentence (S) is broken down into a noun phrase (NP) and a verb phrase (VP); the noun phrase is
broken down further into a determiner (Det) and a nominal (Nom); and so on.

Of course, just like we can use grammars with formal languages, we can use parse trees to represent the
derivation of any word in the language of a grammar. In our parse trees, the root of the tree is the starting
nonterminal S, the leaves of the tree contain terminal symbols from ⌃ (or ✏), and all other vertices of the
tree contain nonterminal symbols from V . If a parse tree contains an internal (non-leaf) vertex A, and all
the children of the vertex A are labelled a1, a2, . . . , an, then the underlying grammar’s rule set contains a
rule of the form A ! a1a2 . . . an.

Example 4. Recall our derivation of the word (())() from the language of words with balanced parentheses
in Example 3. We can represent the derivation of that word by the following parse tree:

S

S

( S

( S

✏

)

)

S

( S

✏

)

2The language of balanced parentheses is also known as the Dyck language.
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For most grammars we deal with, there exists exactly one way to generate any given word in the language
of the grammar. However, this is not always the case. There are some grammars wherein the same word
can be generated in more than one way. Perhaps one of the most well-known examples is the grammar
generating the language of arithmetic expressions. If you recall grade school mathematics, you’ll remember
that there is an order of operations that specify the order in which we should apply arithmetic operations in
a given expression.3 We first evaluate expressions in parentheses, then exponents, then multiplications and
divisions, and finally additions and subtractions.

Let’s consider a simplified set of operations, where we only use parentheses, addition, and multiplication.
The grammar generating the language of arithmetic expressions using these three operators together with
the standard set of numbers is as follows:

S ! (S)

S ! S + S

S ! S ⇥ S

S ! num

If we consider the expression num⇥ num+ num, we discover that there exists more than one way to generate
this expression, depending on whether we apply the + rule or the ⇥ rule first. This is evidenced by the fact
that there exist two parse trees for the same expression:

S

S

S

num

⇥ S

num

+ S

num

S

S

num

⇥ S

S

num

+ S

num

We also assume that, in both of these parse trees, we apply rules to each nonterminal from left to right;
that is, at some level of the parse tree where there exists two nonterminals, we apply a rule to the first (left)
nonterminal before the second (right) nonterminal. This process is known as a leftmost derivation.

If there exists some word in the language of a grammar for which there is more than one leftmost derivation
of that word, then we say that the word is derived ambiguously. This notion leads us to our main definition.

Definition 5 (Ambiguous context-free grammar). A context-free grammar G is ambiguous if there exists
some word w 2 L(G) that can be derived ambiguously.

Example 6. The grammar from Example 3 generating our language of words with balanced parentheses is
ambiguous. Consider again the word (())(). There exist two di↵erent parse trees corresponding to leftmost
derivations of this word; the left parse tree was given in Example 4 and the right parse tree is new:

S

S

( S

( S

✏

)

)

S

( S

✏

)

S

S

S

✏

S

( S

( S

✏

)

)

S

( S

✏

)

3Sometimes referred to using the mnemonics BEDMAS, BIDMAS, BODMAS, or PEMDAS, depending on where you went
to school.
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In some cases, if we have an ambiguous context-free grammar, we can create an equivalent context-free
grammar with reduced or no ambiguity. For example, recalling our three-operation arithmetic grammar from
earlier, we can construct an unambiguous grammar generating the same language of arithmetic expressions
simply by adding a few “more structured” rules:

S ! E

E ! E + T | T
T ! T ⇥ F | F
F ! (E) | num

With this grammar, we’re able to ensure that the addition rule is applied before the multiplication rule.
This allows us to draw a single, unambiguous parse tree for the expression num⇥ num+ num:

S

E

E

T

T

F

num

⇥ F

num

+ T

F

num

However, this process of reducing or removing ambiguity cannot always be done. Some context-free grammars
are inherently ambiguous, meaning that any grammar generating the specified language has some unavoidable
ambiguous component to it, and this ambiguity cannot be removed.

Example 7. Consider the language Ltwoequal = {aibjck | i, j, k � 0 and i = j or j = k} over the alphabet
⌃ = {a, b, c}. This language contains all words that have either the same number of as and bs or the same
number of bs and cs.

We can generate this language using the following grammar:

S ! S1 | S2

S1 ! S1c | A
A ! aAb | ✏
S2 ! aS2 | B
B ! bBc | ✏

The rules S1 and A generate words of the form anbncm and the rules S2 and B generate words of the form
ambncn, each where m,n � 0.

Now, consider words of the form anbncn, where n � 0. All words of this form belong to the language
Ltwoequal, but each such word has two distinct derivations in this grammar: it can be generated either by
the rules S1 and A, or by the rules S2 and B.

While the formal proof that this grammar is inherently ambiguous is quite long, we can intuitively see that
(for instance) any grammar generating this language must have rules similar to S1 and A to produce balanced
pairs of as and bs followed by some number of cs. We can make a similar argument for the rules S2 and B.
Thus, any grammar for this language has inherent ambiguity.
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1.3 Normal Forms of Context-Free Grammars

Up to now, we’ve imposed no restrictions on the form of each rule in our context-free grammars. As long
as each rule of our context-free grammar looked like A ! ↵, where A is a nonterminal symbol and ↵ is a
combination of terminal and nonterminal symbols, we were happy.

However, computers (and, by extension, the people who program computers) like having structure. For
instance, a compiler for a programming language usually incorporates a context-free grammar into its work-
flow at some point during the compilation of a program, and having a highly-structured grammar makes the
compiler’s job of determining which rule to apply both easier and faster.

Therefore, in some cases, we might like to transform a context-free grammar into a normal form; that is, to
modify the grammar in such a way that each rule follows a canonical form or template.

The normal form we will focus on, the Chomsky normal form, was (as the name suggests) first studied by
Noam Chomsky in the late 1950s as he attempted to develop a model of natural language using grammars. A
grammar in Chomsky normal form is such that each rule either has two nonterminal symbols or one terminal
symbol on the right-hand side.

Definition 8 (Chomsky normal form). A context-free grammar is in Chomsky normal form if every rule in
the grammar is of one of the two following forms:

1. A ! BC for A,B,C 2 V with B,C 6= S; or

2. A ! a for A 2 V and a 2 ⌃.

Additionally, we may allow the rule S ! ✏.

The main benefit of converting a grammar into Chomsky normal form comes in how we can represent and
store derivations of words in memory. Since each rule derives either two nonterminal symbols or one terminal
symbol, every parse tree will have a branching factor of either 2 or 1. This fact allows us to use e�cient data
structures for representing binary trees in memory, as well as to apply e�cient algorithms to process parse
trees and derivations. Moreover, the number of steps in a derivation using a grammar in Chomsky normal
form is easy to bound: if the grammar generates a word w, then the derivation of w will contain |w| � 1
applications of a rule of the first form and |w| applications of a rule of the second form.

Example 9. Let ⌃ = {a, b}, and consider the following two grammars. Each grammar generates words
consisting of one b surrounded on either side by zero or more as. The grammar on the left is not in Chomsky
normal form. The grammar on the right is in Chomsky normal form, and it is equivalent to the grammar
on the left.

S ! AbA

A ! Aa | ✏
S0 ! TA | BA | AB | b
T ! AB

A ! AC | a
B ! b

C ! a

Every context-free grammar can be converted into a context-free grammar in Chomsky normal form, and
the conversion process consists of four steps:

1. START: Replace the start nonterminal.

Add a new start nonterminal S0 together with a new rule S0 ! S, where S is the start nonterminal of
the original grammar. This guarantees that S0 will not occur on the right-hand side of any rule.

2. EPS: Remove epsilon rules.

Remove all rules of the form A ! ✏, where A 6= S. For each occurrence of A on the right-hand side of
a rule in the original grammar, add a new rule with that occurrence of A removed from the right-hand
side; that is, convert all rules of the form X ! ↵A� to X ! ↵�, where ↵ and � are combinations
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of nonterminal and terminal symbols. Note that this applies to each occurrence of A, so a rule of the
form X ! ↵A�A� would contribute three new rules: X ! ↵�A�, X ! ↵A��, and X ! ↵��.

If there exists a rule of the form X ! A, then add a new rule of the form X ! ✏ unless we previously
removed a rule of that form.

Repeat until all epsilon rules not involving the original start nonterminal are removed.

3. UNIT: Remove unit rules.

Unit rules are rules of the form A ! B, where A and B are nonterminal symbols. Remove all rules of
this form.

If there exists a rule of the form B ! ↵, where ↵ is a combination of nonterminal and terminal symbols,
then add a new rule A ! ↵ unless we previously removed a unit rule of that form.

Repeat until all unit rules are removed.

4. BIN: Remove rules with more than two nonterminal or terminal symbols on the right-hand side.

Replace each rule of the form A ! ↵1↵2 . . .↵k, where k � 3 and each ↵i is either a nonterminal or
terminal symbol, with a series of new rules A ! ↵1A1, A1 ! ↵2A2, . . . , Ak�2 ! ↵k�1↵k. Each Ai is
a new nonterminal symbol.

If ↵i is a terminal symbol in one of our new rules Ai�1 ! ↵iAi, then remove this rule, replace ↵i with
a new nonterminal symbol Bi, and add two new rules Bi ! ↵i and Ai�1 ! BiAi.

Example 10. Consider the following grammar not in Chomsky normal form:

S ! ASB

A ! aAS | a | ✏
B ! SbS | A | bb

We will convert this grammar to an equivalent grammar in Chomsky normal form.

1. START: Replace the start nonterminal.

Adding a new start nonterminal and the rule S0 ! S gives us the following:

S0 ! S

S ! ASB

A ! aAS | a | ✏
B ! SbS | A | bb

2. EPS: Remove epsilon rules.

The first epsilon rule we will remove is A ! ✏. Since A occurs on the right-hand side of two other
rules (S ! ASB and A ! aAS), removing this rule means we must add two new rules S ! SB and
A ! aS. Additionally, since we have a rule B ! A, we must add a new rule B ! ✏. This gives the
following:

S0 ! S

S ! ASB | SB

A ! aAS | a | aS

B ! SbS | A | bb | ✏
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Next, we remove the epsilon rule B ! ✏ that we just added. Since B occurs on the right-hand side
of two other rules (S ! ASB and S ! SB), removing this rule means we must add two new rules
S ! AS and S ! S. This gives the following:

S0 ! S

S ! ASB | SB | AS | S

A ! aAS | a | aS
B ! SbS | A | bb

3. UNIT: Remove unit rules.

We first remove the unit rule B ! A. We do so by replacing A on the right-hand side of the rule with
everything that can be produced by a rule of the form A ! ↵:

S0 ! S

S ! ASB | SB | AS | S
A ! aAS | a | aS

B ! SbS | bb | aAS | a | aS

Next, we remove the unit rule S ! S. This change is more straightforward, as we don’t need to modify
the S rule in any other way:

S0 ! S

S ! ASB | SB | AS

A ! aAS | a | aS
B ! SbS | bb | aAS | a | aS

Lastly, we remove the unit rule S0 ! S. Again, we replace S on the right-hand side of the rule with
everything that can be produced by a rule of the form S ! ↵:

S0 ! ASB | SB | AS

S ! ASB | SB | AS

A ! aAS | a | aS
B ! SbS | bb | aAS | a | aS

4. BIN: Remove rules with more than two nonterminal or terminal symbols on the right-hand side.

Starting from the top, we replace the rule S0 ! ASB with the rules S0 ! AU1 and U1 ! SB:

S0 ! AU1 | SB | AS

S ! ASB | SB | AS

A ! aAS | a | aS
B ! SbS | bb | aAS | a | aS

U1 ! SB
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Similarly, we replace the rule S ! ASB with the rules S ! AU2 and U2 ! SB:

S0 ! AU1 | SB | AS

S ! AU2 | SB | AS

A ! aAS | a | aS
B ! SbS | bb | aAS | a | aS
U1 ! SB

U2 ! SB

Next, we replace the rule A ! aAS with the rules A ! aU3 and U3 ! AS:

S0 ! AU1 | SB | AS

S ! AU2 | SB | AS

A ! aU3 | a | aS

B ! SbS | bb | aAS | a | aS
U1 ! SB

U2 ! SB

U3 ! AS

Moving along, we replace the rules B ! SbS and B ! aAS with the set of rules B ! SU4, B ! aU5,
U4 ! bS, and U5 ! AS:

S0 ! AU1 | SB | AS

S ! AU2 | SB | AS

A ! aU3 | a | aS

B ! SU4 | bb | aU5 | a | aS

U1 ! SB

U2 ! SB

U3 ! AS

U4 ! bS

U5 ! AS

Lastly, we must replace all rules containing one terminal and one nonterminal symbol on the right-hand
side. We introduce two new rules V1 ! a and V2 ! b and make the appropriate changes to other rules:

S0 ! AU1 | SB | AS

S ! AU2 | SB | AS

A ! V1U3 | a | V1S

B ! SU4 | V2V2 | V1U5 | a | V1S

U1 ! SB

U2 ! SB

U3 ! AS

U4 ! V2S

U5 ! AS

V1 ! a

V2 ! b
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1.4 Context-Free Languages

With our notion of a context-free grammar, it’s easy for us to define a context-free language. Just like
we defined regular languages in terms of regular operations or regular expressions, we have the following
definition for context-free languages in terms of context-free grammars.

Definition 11 (Context-free language). If some language L is generated by a context-free grammar, then
L is context-free.

Thus, each of the languages in this lecture for which we constructed context-free grammars—the language
of words anbn, the language of balanced parentheses, the language of words aibjck where i = j or j = k—
are context-free languages. Our definition also tells us that a language is context-free if we can construct
a context-free grammar generating words in that language. However, be careful: any such context-free
grammar must generate all and only all the words in the given language.

As a shorthand, we denote the class of languages generated by a context-free grammar by CFG.

Example 12. Consider the language L = {a2ibicj+2 | i, j � 0} over the alphabet ⌃ = {a, b, c}. Here, we
can see that the counts of as and bs are related, while the number of cs is independent of the number of as
and bs.

Let’s construct a context-free grammar generating words in L. Evidently, we will need two kinds of rules:
one rule will generate the as and bs together, while the other rule will generate the cs. We can use the start
nonterminal to apply these rules in the correct order. Our context-free grammar will therefore look like the
following:

S ! UV

U ! aaUb | ✏
V ! cV | cc

Let’s now take a look at each rule in turn. The first rule, S, ensures that we apply the U rule before the V
rule. This in turn ensures that all as and bs occur before the cs in the generated word. The second rule, U ,
either recursively produces two as and one b or produces the empty word. This ensures that we maintain
the correct count of 2i as and i bs. Finally, the third rule, V , either recursively produces one c or produces
the symbols cc. This ensures that we have exactly j + 2 cs in our generated word.

Example 13. Recall our context-free language La=b = {anbn | n � 1}. Here, let’s consider a more general
language: Lmixeda=b = {w 2 {a, b}⇤ | |w|a = |w|b}. Observe that the main di↵erence with this language is
that the order of as and bs no longer matters; we just need the same count of as and bs. Can we construct
a context-free grammar for Lmixeda=b?

Since order no longer matters, we just need our context-free grammar to generate a pair of as and bs each
time we add terminal symbols. For this, we can use essentially the same rule as we used in our context-free
grammar for La=b: S ! aSb | bSa. We also need a rule that allows us to mix the order of as and bs; for
instance, to place two as or two bs next to each other instead of strictly nesting pairs. For this, we can use
a rule similar to one we included in our context-free grammar for L(): S ! SS.

Thus, our context-free grammar will look like the following:

S ! SS | aSb | bSa | ✏

2 Pushdown Automata

When we first introduced finite automata as a computational model for regular languages, we emphasized
the facts that finite automata have no memory, no storage, and no ability to return to a previously-read
symbol. Naturally, these restrictions limited the kinds of languages the model is able to recognize, and we
showed that such restrictions resulted in the model recognizing exactly the class of regular languages.


