St. Francis Xavier University
 Department of Computer Science
 CSCI 541: Theory of Computing

 Assignment 1

 Assignment 1
 Due October 11, 2022 at 8:15am

Assignment Regulations.

- This assignment may be completed individually or in a group of two people. If you are collaborating on an assignment as a group, your group must submit exactly one joint set of answers.
- Please include your full name and email address on your submission. For groups, every member must include their full name and email address on the joint submission.
- You may either handwrite or typeset your submission. If your submission is handwritten, please ensure that the handwriting is neat and legible.
[6 marks] 1. For each of the following languages over the alphabet $\Sigma=\{0,1\}$, show how to define the language using only the empty word ϵ, the symbols 0 and 1 , and the operations of union (\cup), concatenation (\cdot), and Kleene star (*).
(a) $L_{1}=\{w \mid w$ starts with 0110 or ends with 1001$\}$.
(b) $L_{2}=\{w \mid w$ is of even length $\}$.
(c) $L_{3}=\{w \mid w$ begins with 0 , ends with 0 , and does not contain 010 as a subword $\}$.
[6 marks] 2. Consider the following regular language over the alphabet $\Sigma=\{0,1\}$:

$$
\left(01^{*} \cup 10\right)^{*}
$$

Construct a finite automaton recognizing this regular language. Show all your work in addition to giving the finite automaton. You do not need to remove epsilon transitions or determinize the finite automaton.
[8 marks]
3. Given the following nondeterministic finite automaton \mathcal{M}, convert it to a deterministic finite automaton \mathcal{M}^{\prime} recognizing the same language. Show all your work in addition to giving the deterministic finite automaton.

[6 marks] 4. Let $\Sigma=\{()$,$\} . A word w$ over Σ contains balanced parentheses if every opening parenthesis is matched by a closing parenthesis and each pair of parentheses is correctly nested. Thus, the words (), ()(()),
 Using the pumping lemma for regular languages, prove that the following language is not regular:

$$
L_{()}=\{w \mid w \text { contains balanced parentheses }\}
$$

[4 marks] 5. Is the following language over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ a regular language? If it is, give a regular expression corresponding to the language or a finite automaton recognizing the language. If it is not, use the pumping lemma for regular languages to prove this.

$$
L=\left\{u w w^{\mathrm{R}} v \mid u, w, v \in\{\mathrm{a}, \mathrm{~b}\}^{+}\right\}
$$

Hint. Be careful! This language can be deceiving at first glance.

