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1.3 Normal Forms of Context-Free Grammars

Up to now, we’ve imposed no restrictions on the form of each rule in our context-free grammars. As long
as each rule of our context-free grammar looked like A ! ↵, where A is a nonterminal symbol and ↵ is a
combination of terminal and nonterminal symbols, we were happy.

However, computers (and, by extension, the people who program computers) like having structure. For
instance, a compiler for a programming language usually incorporates a context-free grammar into its work-
flow at some point during the compilation of a program, and having a highly-structured grammar makes the
compiler’s job of determining which rule to apply both easier and faster.

Therefore, in some cases, we might like to transform a context-free grammar into a normal form; that is, to
modify the grammar in such a way that each rule follows a canonical form or template.

The normal form we will focus on, the Chomsky normal form, was (as the name suggests) first studied by
Noam Chomsky in the late 1950s as he attempted to develop a model of natural language using grammars. A
grammar in Chomsky normal form is such that each rule either has two nonterminal symbols or one terminal
symbol on the right-hand side.

Definition 8 (Chomsky normal form). A context-free grammar is in Chomsky normal form if every rule in
the grammar is of one of the two following forms:

1. A ! BC for A,B,C 2 V with B,C 6= S; or

2. A ! a for A 2 V and a 2 ⌃.

Additionally, we may allow the rule S ! ✏.

The main benefit of converting a grammar into Chomsky normal form comes in how we can represent and
store derivations of words in memory. Since each rule derives either two nonterminal symbols or one terminal
symbol, every parse tree will have a branching factor of either 2 or 1. This fact allows us to use e�cient data
structures for representing binary trees in memory, as well as to apply e�cient algorithms to process parse
trees and derivations. Moreover, the number of steps in a derivation using a grammar in Chomsky normal
form is easy to bound: if the grammar generates a word w, then the derivation of w will contain |w| � 1
applications of a rule of the first form and |w| applications of a rule of the second form.

Example 9. Let ⌃ = {a, b}, and consider the following two grammars. Each grammar generates words
consisting of one b surrounded on either side by zero or more as. The grammar on the left is not in Chomsky
normal form. The grammar on the right is in Chomsky normal form, and it is equivalent to the grammar
on the left.

S ! AbA

A ! Aa | ✏
S0 ! TA | BA | AB | b
T ! AB

A ! AC | a
B ! b

C ! a

Every context-free grammar can be converted into a context-free grammar in Chomsky normal form, and
the conversion process consists of four steps:

1. START: Replace the start nonterminal.

Add a new start nonterminal S0 together with a new rule S0 ! S, where S is the start nonterminal of
the original grammar. This guarantees that S0 will not occur on the right-hand side of any rule.

2. EPS: Remove epsilon rules.

Remove all rules of the form A ! ✏, where A 6= S. For each occurrence of A on the right-hand side of
a rule in the original grammar, add a new rule with that occurrence of A removed from the right-hand
side; that is, convert all rules of the form X ! ↵A� to X ! ↵�, where ↵ and � are combinations
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of nonterminal and terminal symbols. Note that this applies to each occurrence of A, so a rule of the
form X ! ↵A�A� would contribute three new rules: X ! ↵�A�, X ! ↵A��, and X ! ↵��.

If there exists a rule of the form X ! A, then add a new rule of the form X ! ✏ unless we previously
removed a rule of that form.

Repeat until all epsilon rules not involving the original start nonterminal are removed.

3. UNIT: Remove unit rules.

Unit rules are rules of the form A ! B, where A and B are nonterminal symbols. Remove all rules of
this form.

If there exists a rule of the form B ! ↵, where ↵ is a combination of nonterminal and terminal symbols,
then add a new rule A ! ↵ unless we previously removed a unit rule of that form.

Repeat until all unit rules are removed.

4. BIN: Remove rules with more than two nonterminal or terminal symbols on the right-hand side.

Replace each rule of the form A ! ↵1↵2 . . .↵k, where k � 3 and each ↵i is either a nonterminal or
terminal symbol, with a series of new rules A ! ↵1A1, A1 ! ↵2A2, . . . , Ak�2 ! ↵k�1↵k. Each Ai is
a new nonterminal symbol.

If ↵i is a terminal symbol in one of our new rules Ai�1 ! ↵iAi, then remove this rule, replace ↵i with
a new nonterminal symbol Bi, and add two new rules Bi ! ↵i and Ai�1 ! BiAi.

Example 10. Consider the following grammar not in Chomsky normal form:

S ! ASB

A ! aAS | a | ✏
B ! SbS | A | bb

We will convert this grammar to an equivalent grammar in Chomsky normal form.

1. START: Replace the start nonterminal.

Adding a new start nonterminal and the rule S0 ! S gives us the following:

S0 ! S

S ! ASB

A ! aAS | a | ✏
B ! SbS | A | bb

2. EPS: Remove epsilon rules.

The first epsilon rule we will remove is A ! ✏. Since A occurs on the right-hand side of two other
rules (S ! ASB and A ! aAS), removing this rule means we must add two new rules S ! SB and
A ! aS. Additionally, since we have a rule B ! A, we must add a new rule B ! ✏. This gives the
following:

S0 ! S

S ! ASB | SB

A ! aAS | a | aS

B ! SbS | A | bb | ✏
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Next, we remove the epsilon rule B ! ✏ that we just added. Since B occurs on the right-hand side
of two other rules (S ! ASB and S ! SB), removing this rule means we must add two new rules
S ! AS and S ! S. This gives the following:

S0 ! S

S ! ASB | SB | AS | S

A ! aAS | a | aS
B ! SbS | A | bb

3. UNIT: Remove unit rules.

We first remove the unit rule B ! A. We do so by replacing A on the right-hand side of the rule with
everything that can be produced by a rule of the form A ! ↵:

S0 ! S

S ! ASB | SB | AS | S
A ! aAS | a | aS

B ! SbS | bb | aAS | a | aS

Next, we remove the unit rule S ! S. This change is more straightforward, as we don’t need to modify
the S rule in any other way:

S0 ! S

S ! ASB | SB | AS

A ! aAS | a | aS
B ! SbS | bb | aAS | a | aS

Lastly, we remove the unit rule S0 ! S. Again, we replace S on the right-hand side of the rule with
everything that can be produced by a rule of the form S ! ↵:

S0 ! ASB | SB | AS

S ! ASB | SB | AS

A ! aAS | a | aS
B ! SbS | bb | aAS | a | aS

4. BIN: Remove rules with more than two nonterminal or terminal symbols on the right-hand side.

Starting from the top, we replace the rule S0 ! ASB with the rules S0 ! AU1 and U1 ! SB:

S0 ! AU1 | SB | AS

S ! ASB | SB | AS

A ! aAS | a | aS
B ! SbS | bb | aAS | a | aS

U1 ! SB
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Similarly, we replace the rule S ! ASB with the rules S ! AU2 and U2 ! SB:

S0 ! AU1 | SB | AS

S ! AU2 | SB | AS

A ! aAS | a | aS
B ! SbS | bb | aAS | a | aS
U1 ! SB

U2 ! SB

Next, we replace the rule A ! aAS with the rules A ! aU3 and U3 ! AS:

S0 ! AU1 | SB | AS

S ! AU2 | SB | AS

A ! aU3 | a | aS

B ! SbS | bb | aAS | a | aS
U1 ! SB

U2 ! SB

U3 ! AS

Moving along, we replace the rules B ! SbS and B ! aAS with the set of rules B ! SU4, B ! aU5,
U4 ! bS, and U5 ! AS:

S0 ! AU1 | SB | AS

S ! AU2 | SB | AS

A ! aU3 | a | aS

B ! SU4 | bb | aU5 | a | aS

U1 ! SB

U2 ! SB

U3 ! AS

U4 ! bS

U5 ! AS

Lastly, we must replace all rules containing one terminal and one nonterminal symbol on the right-hand
side. We introduce two new rules V1 ! a and V2 ! b and make the appropriate changes to other rules:

S0 ! AU1 | SB | AS

S ! AU2 | SB | AS

A ! V1U3 | a | V1S

B ! SU4 | V2V2 | V1U5 | a | V1S

U1 ! SB

U2 ! SB

U3 ! AS

U4 ! V2S

U5 ! AS

V1 ! a

V2 ! b
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1.4 Context-Free Languages

With our notion of a context-free grammar, it’s easy for us to define a context-free language. Just like
we defined regular languages in terms of regular operations or regular expressions, we have the following
definition for context-free languages in terms of context-free grammars.

Definition 11 (Context-free language). If some language L is generated by a context-free grammar, then
L is context-free.

Thus, each of the languages in this lecture for which we constructed context-free grammars—the language
of words anbn, the language of balanced parentheses, the language of words aibjck where i = j or j = k—
are context-free languages. Our definition also tells us that a language is context-free if we can construct
a context-free grammar generating words in that language. However, be careful: any such context-free
grammar must generate all and only all the words in the given language.

As a shorthand, we denote the class of languages generated by a context-free grammar by CFG.

Example 12. Consider the language L = {a2ibicj+2 | i, j � 0} over the alphabet ⌃ = {a, b, c}. Here, we
can see that the counts of as and bs are related, while the number of cs is independent of the number of as
and bs.

Let’s construct a context-free grammar generating words in L. Evidently, we will need two kinds of rules:
one rule will generate the as and bs together, while the other rule will generate the cs. We can use the start
nonterminal to apply these rules in the correct order. Our context-free grammar will therefore look like the
following:

S ! UV

U ! aaUb | ✏
V ! cV | cc

Let’s now take a look at each rule in turn. The first rule, S, ensures that we apply the U rule before the V
rule. This in turn ensures that all as and bs occur before the cs in the generated word. The second rule, U ,
either recursively produces two as and one b or produces the empty word. This ensures that we maintain
the correct count of 2i as and i bs. Finally, the third rule, V , either recursively produces one c or produces
the symbols cc. This ensures that we have exactly j + 2 cs in our generated word.

Example 13. Recall our context-free language La=b = {anbn | n � 1}. Here, let’s consider a more general
language: Lmixeda=b = {w 2 {a, b}⇤ | |w|a = |w|b}. Observe that the main di↵erence with this language is
that the order of as and bs no longer matters; we just need the same count of as and bs. Can we construct
a context-free grammar for Lmixeda=b?

Since order no longer matters, we just need our context-free grammar to generate a pair of as and bs each
time we add terminal symbols. For this, we can use essentially the same rule as we used in our context-free
grammar for La=b: S ! aSb | bSa. We also need a rule that allows us to mix the order of as and bs; for
instance, to place two as or two bs next to each other instead of strictly nesting pairs. For this, we can use
a rule similar to one we included in our context-free grammar for L(): S ! SS.

Thus, our context-free grammar will look like the following:

S ! SS | aSb | bSa | ✏

2 Pushdown Automata

When we first introduced finite automata as a computational model for regular languages, we emphasized
the facts that finite automata have no memory, no storage, and no ability to return to a previously-read
symbol. Naturally, these restrictions limited the kinds of languages the model is able to recognize, and we
showed that such restrictions resulted in the model recognizing exactly the class of regular languages.
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At the end of the previous lecture, we saw that there exist languages that are not regular, and therefore
are not recognized by finite automata. We know now that the next “step” of our language hierarchy is the
class of context-free languages. Thus, a new question arises: what kind of computational model is capable
of recognizing context-free languages?

Since every context-free language is generated by a context-free grammar, and since we know that context-
free grammars must “remember” which nonterminal and terminal symbols are being manipulated over the
course of a derivation, any model of computation recognizing context-free languages must include a form of
memory. What is the best form of memory to use in this situation? If we view a derivation as a parse tree,
then the derivation progresses as we go deeper into the parse tree, and we can easily model the depth of a
derivation using stack memory.

As a brief review, a stack is a data structure with two operations that manipulate data: push and pop.
Pushing a symbol to a stack adds it to the top of the stack and moves all other symbols one position down in
the stack. Conversely, popping a symbol from a stack removes it from the top and moves all other symbols
one position up. As a result, a stack provides last-in-first-out (LIFO) storage.4 We can view the symbol at
the top of the stack at any time during a computation, but we cannot view any other symbols in the stack
unless we pop the symbol currently at the top of the stack.

push a
====)

a

push b
====)

b
a

pop b
====)

a

push c
====)

c
a

push a
====) a

c
a

· · ·

Since we’re dealing with an abstract model of computation and not a real-world computer, we can make the
assumption that our stack size is unbounded ; that is, we can push as many symbols to the stack as we want
without worrying about running out of space.

Now that we have our form of storage established, we can define our model of computation. At its core, this
model is a finite automaton with a stack added to it. Since the automaton is now able to push symbols to
a stack, we give it an appropriate name: a pushdown automaton.5

In addition to reading a symbol of its input word on a transition, a pushdown automaton can read from and
write to the stack on the same transition. In order to perform this double duty, we specify two alphabets for
a pushdown automaton: the input alphabet, which contains symbols used in the input word, and the stack
alphabet, which contains symbols the pushdown automaton can use in its stack. This allows us to combine
actions on the input word and actions on the stack in a single transition, without risking confusion over the
meaning of any particular alphabet symbol. The transitions of a pushdown automaton may additionally use
epsilon for either the input word action (i.e., not reading a symbol of the input word) or the stack action
(i.e., not pushing to/popping from the stack). Just like we denoted a finite automaton’s alphabet by ⌃, we
will use ⌃ to denote a pushdown automaton’s input alphabet. Likewise, we will use � to denote the stack
alphabet.

In order for our model of computation to use two alphabets at once, we must modify its transition function
accordingly. Recall that a finite automaton (with epsilon transitions) transitions on a pair (q, a), where
q 2 Q and a 2 ⌃ [ {✏}. By comparison, a pushdown automaton transitions on a tuple (q, a, b), where
q 2 Q, a 2 ⌃ [ {✏}, and b 2 � [ {✏}. Thus, a pushdown automaton uses both the current symbol of its
input word (or epsilon) as well as the top symbol of its stack (or epsilon) to determine to which state it
will transition. After transitioning, the pushdown automaton will be in a possibly-di↵erent state, and it will
have a possibly-di↵erent symbol at the top of its stack.

Lastly, a pushdown automaton has no mechanism for detecting whether or not its stack is empty. To avoid
any potential issues, we often incorporate a special “bottom of stack” symbol ? into the transitions of a

4By comparison, a data structure like a queue would provide first-in-first-out (FIFO) storage.
5The name “pushdown automaton” doesn’t specifically come from its ability to push symbols, but rather from an older term

for a stack: a pushdown store.


