
St. Francis Xavier University
Department of Computer Science

CSCI 550: Approximation Algorithms
Lecture 8: The Primal-Dual Method

Fall 2022

1 Two Sides, Same Coin

Thus far in the course, we’ve seen a number of formulations of decision problems as integer programs,
linear programs, semidefinite programs, and vector programs. We’ve also seen methods of solving such
programs to obtain approximate solutions to the associated problems, although some of those methods
weren’t particularly efficient. In this lecture, we will take a look at how to use linear programs in a slightly
different way: instead of solving the program directly, we will take some solution from a closely related
program and use it to find an approximate solution to our original program.

If what was just described in the last paragraph sounds familiar, that’s because we were introduced to this
method back in our introductory lecture. This approach is known as the primal-dual method, and it’s named
for the two linear programs we use to obtain our solution: the primal program, which is the original program
for our problem, and the dual program, which is (in a very loose sense) akin to the “inverse” of the primal
program. We recall the definition of the dual program here.

Definition 1 (Dual of linear program). Given a linear program L, its dual is a linear program where

• every decision variable in L becomes a constraint of the dual;

• every constraint of L becomes a decision variable in the dual; and

• the objective function of L is reversed in the dual (i.e., maximization becomes minimization and vice
versa).

Because we construct the dual program directly from the formulation of the primal program, we know that
there exists some kind of relationship between the two programs; namely, the number of decision variables in
the dual program is equal to the number of constraints in the primal program, and vice versa. This suggests
that the decision variables of one program are complementary to the constraints of the other program.

Furthermore, if we know which value a decision variable takes on, then we can make a claim about the
value of the complementary constraint. If a decision variable in the dual program is greater than zero (also
known as slack), then the corresponding constraint of the primal program must be an equality (also known
as tight), and vice versa. This property is known as complementary slackness.

Specifically, with the notion of primal complementary slackness—that is, if xj > 0, then
∑

j yi = cj—we can
define the general primal-dual method that we will use in this lecture. The method relies on the fact that,
if some current solution is not feasible for the primal program, then there must exist some adjustment that
we can make to the dual program that gets us closer to a primal feasible solution.

Algorithm 1: Primal-dual method

y ← 0
while there does not exist an integral solution satisfying primal complementary slackness do

get direction of increase for dual and adjust appropriately

return feasible integral solution x satisfying primal complementary slackness

CSCI 550: Approximation Algorithms
Lecture 8, Fall 2022 Page 2

1.1 Hitting Sets

The first problem to which we will apply the primal-dual method is known as the hitting set problem. Given
a ground set of elements and a collection of subsets, we want to choose a subset of elements from the ground
set that both “hits” (or intersects) each subset in the collection and minimizes the total cost of the elements
we choose.

Hitting-Set
Given: a ground set of elements E = {e1, . . . , en}, subsets T1, . . . , Tp ⊆ E, and a nonnegative cost
ce ≥ 0 for each element e ∈ E
Determine: a minimum-cost subset A ⊆ E such that A ∩ Ti ̸= ∅ for all 1 ≤ i ≤ p

If you think back to our introductory lecture, you may notice that the hitting set problem is quite similar to
our familiar set cover problem. In fact, these two problems are equivalent! We can establish the equivalence
as follows: observe that each element ei of the ground set E in an instance of the hitting set problem
corresponds to some subset Si in the set cover problem, while each subset Tj of the hitting set problem
instance corresponds to some ground set element ej in the set cover problem.

We could alternatively relate the two problems in the following way: in the set cover problem, we must find
a collection of subsets that covers some given set of elements, while in the hitting set problem, we must find
a set of elements that covers some given collection of subsets.

Example 2. Consider the following graph:

3

1 2

4 5

Furthermore, suppose that we are given a subset of edges {(1, 2), (1, 3), (2, 3), (2, 5), (3, 4)}. In this case, a
hitting set for this subset contains the vertices {2, 3, 4}.

Note that, as a consequence of the connection between the hitting set problem and the set cover problem,
and knowing that the set cover problem is NP-complete, we know that the hitting set problem is also
NP-complete.

Formulating the hitting set problem as a linear program is straightforward: our objective is clearly to
minimize the total cost of the elements we choose, and our constraints are rather natural.

minimize
∑
e∈E

cexe

subject to
∑
e∈Ti

xe ≥ 1, for all i ∈ {1, . . . , p}

xe ≥ 0, for all e ∈ {1, . . . , n}

(HS-LP)

Now, to transform the primal linear program HS-LP to its dual program form, we just need to exchange
decision variables and constraints, as well as change our objective from minimization to maximization.

maximize

p∑
i=1

yi

subject to
∑

i:e∈Ti

yi ≤ ce, for all e ∈ E

yi ≥ 0, for all i ∈ {1, . . . , p}

(HS-DualLP)

CSCI 550: Approximation Algorithms
Lecture 8, Fall 2022 Page 3

With this dual program formulation, we can apply the primal-dual method. We begin with a solution to the
dual program: y = 0. Clearly, this solution is feasible for the dual program, since ce ≥ 0 for all e. However,
the corresponding primal program solution is not feasible, since A = ∅ at this stage. If the primal program
solution is not feasible, then that means A doesn’t hit every subset, so there must exist at least one subset
Tk where A ∩ Tk = ∅.

This observation implies that, for all elements e ∈ Tk, the corresponding dual constraint has the property∑
i:e∈Ti

yi < ce; that is, the constraint is slack. Since yk is found only in these constraints, we can increase
yk until the constraint becomes tight, and at the same time we can add a new element e to A corresponding
to the cost ce that yk has increased by. This new element e will then hit the subset Tk, and we can check
once again if the solution is feasible.

This brings us to our primal-dual algorithm for the hitting set problem.

Algorithm 2: Hitting set—primal-dual

y ← 0
A← ∅
while A is not feasible do

find a subset Tk such that A ∩ Tk = ∅
increase yk until there exists an element e ∈ Tk such that

∑
i:e∈Ti

yi = ce
A← A ∪ {e}

Let’s now establish the performance guarantee of our algorithm. Suppose that α denotes the size of the
largest subset Ti; that is, for all 1 ≤ i ≤ p, |Ti| ≤ α.

Theorem 3. Algorithm 2 gives an α-approximation algorithm for the hitting set problem.

Proof. By the way Algorithm 2 constructs the set A, we have that∑
e∈A

ce =
∑
e∈A

∑
i:e∈Ti

yi

=

p∑
i=1

|A ∩ Ti|yi,

since each yi is counted once for each element e ∈ A that appears in Ti.

Since each subset Ti contains at most α elements, we have that |A ∩ Ti| ≤ α for all i, and so

∑
e∈A

ce ≤ α ·
p∑

i=1

yi

≤ α ·OPT,

since the dual solution
∑p

i=1 yi is upper-bounded by the primal solution z∗LP, and additionally, z∗LP ≤ z∗IP =
OPT.

Drawing one final comparison between the hitting set problem and the set cover problem, recall that our
primal-dual approximation algorithm for the weighted set cover problem had a performance guarantee of
f = maxi |{j | ei ∈ Sj}|, or the maximum frequency of any element ei. With the hitting set problem, our
performance guarantee instead relies on the maximum size of any subset Ti.

1.2 Feedback Vertex Sets

In our next problem, the feedback vertex set problem, we consider the problem of finding a subset of vertices
in a given graph where, if we remove the vertices in this subset from the graph (and remove the edges
adjacent to each removed vertex), then the resultant graph will not contain any cycles.

CSCI 550: Approximation Algorithms
Lecture 8, Fall 2022 Page 4

Undirected-Feedback-Vertex-Set
Given: an undirected graph G = (V,E) and an associated weight wi ≥ 0 for each vertex i ∈ V
Determine: a subset of vertices A ⊆ V minimizing the sum of weights

∑
i∈A wi such that, for each

cycle C in G, A ∩ C ̸= ∅

Example 4. Consider the following graph:

The two vertices in the center of the graph, connected by the single middle edge, constitute a feedback vertex
set. If we remove these vertices from the graph along with the adjacent edges, then there will be no more
cycles within the graph.

If you look at the definition of the feedback vertex set problem carefully, you might notice that it’s quite
similar to the hitting set problem we studied in the last section. If we take our “ground set” to be the set
of vertices V , and we take the “cost” of each element to be the weight wi, then the “subsets to hit” in the
feedback vertex set problem consist exactly of the set of cycles C in the graph.

Since we can formulate the feedback vertex set problem as an instance of the hitting set problem, we know
that this problem is NP-complete. We can, however, make a stronger statement: the undirected version
of the feedback vertex set problem is APX-complete, so unless P = NP, we cannot find a polynomial-time
approximation scheme for this problem.

Like before, we can formulate the feedback vertex set problem as a linear program:

minimize
∑
i∈V

wixi

subject to
∑
i∈C

xi ≥ 1, for all cycles C

xi ≥ 0, for all i ∈ V

(FVS-LP)

One problem arises with this formulation, though: we could potentially have a number of cycles in the graph
exponential to the number of vertices, which means we would have an exponential number of “subsets to
hit”. This means that using Algorithm 2 would have a worst-case exponential runtime! Fortunately, we
don’t necessarily need to consider all cycles in the graph; since the primal-dual method starts with a feasible
solution to the dual problem and modifies the solution as appropriate, we only need to find some cycle that
makes the primal solution not feasible, if it exists, and handle that cycle.

CSCI 550: Approximation Algorithms
Lecture 8, Fall 2022 Page 5

Converting the program FVS-LP to its dual form, we get the following:

maximize
∑

cycles C

yC

subject to
∑
i∈C

for all cycles C

yC ≤ wi, for all i ∈ V

yC ≥ 0, for all cycles C

(FVS-DualLP)

We can now apply a variation of Algorithm 2 to this dual program and get an α-approximation algorithm
for the feedback vertex set problem. The biggest modification we need to make to the algorithm is, whenever
we add a vertex v to our subset S, we remove v from G and subsequently remove any vertices of degree 1
from G. However, simply applying the algorithm as is may not result in the best approximate solution; if
we choose some arbitrary cycle C in our graph and increase the corresponding dual decision variable yC , the
size of the intersection S ∩ C could become very large and our subset of vertices S could contain far more
vertices than we need to “hit” all cycles of the graph.

To refine our algorithm, and to ensure that our subset S doesn’t grow too large or include unnecessary
vertices, we can make a couple of observations. First, we will reduce our given graph G to an equivalent
graph G′ where (i) G′ doesn’t contain any vertices of degree 1, and (ii) every vertex of degree 2 in G′ is
adjacent to a vertex of higher degree. To see how we can perform this reduction, consider two vertices of
degree 2 i and j in G, where, without loss of generality, we have wi ≤ wj . Any cycle that visits vertex i
must also visit vertex j, and because vertex i has a weight less than or equal to the weight of vertex j, we
can always choose vertex i to “hit” this cycle. Thus, we can “shortcut” vertex j out of G by adding an edge
to skip over the vertex.

Given a graph satisfying the previous two conditions, we can make a claim about the length of certain cycles
in the graph.

Lemma 5 (Erdős–Pósa property). In any nonempty graph G′ with n vertices in which (i) there are no
vertices of degree 1 and (ii) for each vertex of degree 2, every adjacent vertex has higher degree, there exists
a cycle in G′ with length no greater than 4 log2(n).

Proof. Perform a breadth-first search through G′. If we do not revisit a previously-visited vertex (and
therefore form a cycle), then at every other level we will have increased the number of visited vertices by a
factor of two. At iteration i of the search, we will have visited 2i/2 vertices, Thus, we must find a cycle by
iteration 2 log2(n), which corresponds to traversing both “halves” of the cycle and revisiting a previously-
visited vertex at the “halfway point” of the cycle.

Therefore, reducing our graph in this way will allow us to refine our algorithm to choose only “unhit” cycles
of length at most 4 log2(n), and we therefore get a 4 log2(n)-approximation algorithm.

While this modification ensures our subset S doesn’t grow too large, it still doesn’t address the other
underlying problem with our algorithm: at each iteration, the algorithm adds some vertex to its subset to
make the solution feasible, but by the end of the algorithm’s execution, there’s no guarantee that every
vertex in the subset is truly necessary to maintain feasibility. Leaving these unnecessary vertices in the
subset increases the cost of the subset, which in turn reduces the accuracy of our approximation.

Fortunately, we can make a small and easy tweak to our algorithm to remove unnecessary elements from our
subset.

CSCI 550: Approximation Algorithms
Lecture 8, Fall 2022 Page 6

Algorithm 3: Feedback vertex set—primal-dual

y ← 0
A← ∅
ℓ← 0
repeatedly remove vertices of degree 1 from G
while A is not feasible do

ℓ← ℓ+ 1
find a cycle C such that A ∩ C = ∅
increase yk until there exists a vertex vℓ ∈ C such that

∑
i:vℓ∈C yi = wvℓ

A← A ∪ {vℓ}
remove vℓ from G and repeatedly remove any new vertices of degree 1 from G

for j from ℓ down to 1 do
if A \ {vj} remains a feasible solution then

A← A \ {vj}

If A is the solution produced by Algorithm 3 after a total of ℓ iterations, then on iteration j, the algorithm
finds some “unhit” cycle Cj where A∩Cj = ∅ and adjusts the dual decision variable until some vertex vj is
added to A. By this construction, we know that Cj ∩ {v1, . . . , vj−1} = ∅.

Before we establish the performance guarantee of Algorithm 3, we require one notion. Given a set E, say
that Z ⊆ E is a minimal augmentation of X ⊆ E if

1. X ∪ Z is a feasible solution; and

2. for any e ∈ Z, X ∪ Z \ {e} is not a feasible solution.

We can then claim that A \ {v1, . . . , vj−1} is a minimal augmentation of {v1, . . . , vj−1}. Clearly, the union
of these two subsets is feasible, so the first condition is satisfied. Additionally, since A \ {v1, . . . , vj−1} ⊆
{vj , . . . , vℓ}, for any vt ∈ {vj , . . . , vℓ} where vt ∈ A, since vt was not removed by the for loop of Algorithm 3,
A \ {vt} is not feasible and so the second condition is also satisfied.

It follows from this observation that |A ∩ Cj | ≤ max |B ∩ Cj |, where the maximum is taken over all subsets
B such that B is a minimum augmentation of {v1, . . . , vj−1}. If we denote by β the maximum number of
elements of any “unhit” cycle that could possibly be added by the algorithm under a minimal augmentation,
then we get the following result:

Theorem 6. Algorithm 3 gives a β-approximation algorithm for the feedback vertex set problem.

Proof. Since |A ∩ Cj | ≤ max |B ∩ Cj | ≤ β, we have that∑
i∈A

wi =
∑
i

|A ∩ Ci| · yi

≤ β ·
∑
i

yi

≤ β ·OPT.

1.3 Shortest s-t Paths

Finally, we will consider the problem of finding the shortest path between two specified vertices s and t in
an undirected graph G. Each edge of the graph has an associated cost, so by “shortest path”, we mean the
path of least cost between the two vertices.

Shortest-S-T-Path
Given: an undirected graph G = (V,E), two vertices s, t ∈ V , and an associated cost ci ≥ 0 for each
edge e ∈ E
Determine: a minimum-cost path from vertex s to vertex t

CSCI 550: Approximation Algorithms
Lecture 8, Fall 2022 Page 7

Example 7. Consider the following graph:

A

B

D

C

E

7

3

7

1
2

4

5

Suppose that we take s = A and t = C. While a number of paths exist between s and t, the shortest path
has a total cost of 3 + 1 + 2 + 4 = 10.

Much like we did with the feedback vertex set problem, we can model an instance of the shortest s-t path
problem as an instance of the hitting set problem. We take as our “ground set” the set of edges E, and we take
the “cost” of each element simply to be the cost of each edge. Then, the “subsets to hit” are the edges that
make up an s-t cut; that is, the edges that, if removed, would place vertices s and t in disjoint subsets. We
can formalize this notion by taking Ti = δ(Si), where s ∈ Si, t ̸∈ Si, and δ(S) = {(u, v) ∈ E | u ∈ S, v ̸∈ S}.

Lemma 8. A set of edges E contains an s-t path if and only if E hits every s-t cut.

Proof. (⇒): Suppose to the contrary that E does not contain an s-t path. Let Si denote the largest connected
component containing vertex s. By our assumption, vertex t is not in Si. Moreover, E cannot contain any
edge from δ(Si), or else we could include the other vertex incident to that edge and obtain a larger connected
component containing s. This implies that some s-t cut is not hit by E.

(⇐): Suppose to the contrary that E does not hit some s-t cut Si. In this case, E must only contain edges
that either join two vertices of Si or join two vertices of the complement of Si. Then, any path starting from
vertex s ∈ Si consisting of edges in E can only bring us to other vertices in Si, but vertex t is not in Si.
Therefore, E does not contain an s-t path.

Interestingly, you might remember from a previous class on algorithm analysis that shortest path problems
can be solved in polynomial time using Dijkstra’s algorithm, the Bellman–Ford algorithm, or any number
of other shortest path algorithms. So, why then are we considering this problem, when all of the other
problems we’ve studied in this course are much more difficult? As it turns out, we can draw an interesting
parallel between our primal-dual algorithm and Dijkstra’s algorithm: they behave in exactly the same way!
We can also take the findings we obtain from studying this problem and apply them to more general, harder
problems, such as the generalized Steiner tree problem.

Having established a connection between the shortest s-t path problem and the hitting set problem in
Lemma 8, we can use a modified version of Algorithm 3 to obtain a solution to an instance of the shortest
s-t path problem.

The idea behind the modification is that, whenever the subset A constructed by the algorithm is not feasible,
the algorithm chooses δ(Sk) as the next subset to “hit”, where Sk denotes the connected component of the
subgraph (V,A) containing vertex s. Since the algorithm chose δ(Sk), we know that A ∩ Sk = ∅, and much
of the analysis of the previous section can be applied here.

From our earlier observation that our primal-dual algorithm essentially behaves in the same way as Dijkstra’s
algorithm, which is known to produce a shortest path between two vertices, we can deduce that our algorithm
will give us an optimal answer to any given instance of the problem. This, in turn, means that we obtain a
fabled 1-approximation algorithm for the problem!

Theorem 9. Modifying Algorithm 3 gives a 1-approximation algorithm for the shortest s-t path problem.

Proof. The goal of the proof is simply to show that β = 1, where β denotes the performance guarantee of
Algorithm 3 established in Theorem 6.

CSCI 550: Approximation Algorithms
Lecture 8, Fall 2022 Page 8

Let A be a solution produced by the algorithm that is not feasible, and let B be a minimal augmentation
of A. Suppose that (s, v1, . . . , vℓ, t) is an s-t path in the subgraph (V,A ∪ B). Choose the maximal value i
such that vi ∈ Sk and vi+1 ̸∈ Sk, where Sk is the connected component containing vertex s.

Since Sk is a connected component, there exists an s-vi path within Sk, (s, w1, . . . , wj , vi), where wm ∈ Sk

for all 1 ≤ m ≤ j. Therefore, combining the two paths to obtain (s, w1, . . . , wj , vi, vi+1, . . . , vℓ, t) produces
an s-t path. We can then take B′ = {(vi, vi+1), . . . , (vℓ, t)} to be an augmentation.

Since all edges in B′ are adjacent to at least one vertex not in Sk, then none of these edges appear in A,
which implies that each edge comes from B; that is, B′ ⊆ B. Moreover, by our assumption that B was a
minimal augmentation, we have that B′ = B. Therefore,

|B ∩ δ(Sk)| = |B′ ∩ δ(Sk)|
= |{vi, vi+1}|,

since the first edge in B′ is the only one to share a vertex with Sk. Since |{vi, vi+1}| = 1, we get that β = 1
as desired.

Following a similar approach, we can obtain a 2-approximation algorithm for the generalized Steiner tree
problem and many other problems taking graphs as input.

