St. Francis Xavier University
 Department of Computer Science
 CSCI 356: Theory of Computing Assignment 1
 Due September 20, 2023 at 12:30pm

Assignment Regulations.

- This assignment must be completed individually.
- Please include your full name and email address on your submission.
- You may either handwrite or typeset your submission. If your submission is handwritten, please ensure that the handwriting is neat and legible.
[8 marks] 1. Let $\Sigma=\{\mathrm{a}, \mathrm{b}\}$, and consider the regular expressions $\boldsymbol{r}=(\mathrm{ba}+\mathrm{bab})^{*} \mathrm{a}^{*}$ and $\boldsymbol{s}=\mathrm{a}^{*} \mathrm{~b}\left(\mathrm{a}^{*} \mathrm{ba} \mathrm{a}^{*} \mathrm{~b}\right)^{*} \mathrm{a}^{*}$.
(a) Give two examples of words that belong to both languages $L(\boldsymbol{r})$ and $L(\boldsymbol{s})$.
(b) Give two examples of words that belong to the language $L(\boldsymbol{r})$ but not to the language $L(\boldsymbol{s})$.
(c) Give two examples of words that belong to the language $L(\boldsymbol{s})$ but not to the language $L(\boldsymbol{r})$.
(d) In 1-2 sentences, describe the languages $L(\boldsymbol{r})$ and $L(\boldsymbol{s})$ in general. What kind of words does either language contain?
[6 marks]

2. For each of the following languages over the alphabet $\Sigma=\{0,1\}$, show how to define the language using only the empty word ϵ, the symbols 0 and 1 , and the operations of union (\cup), concatenation (\cdot), and Kleene star $\left(^{*}\right)$.
(a) $L_{1}=\{w \mid w$ contains both 000 and 111 as subwords $\}$.
(b) $L_{2}=\{w \mid w$ has even length and contains 010 as a subword $\}$.
(c) $L_{3}=\{w \mid w$ both begins and ends with the subword 010 $\}$.
(Note that the beginning and ending occurrences of 010 may overlap with one another.)
[6 marks] 3. Consider the following finite automaton.

(a) Give three examples of input words accepted by this finite automaton, and give three examples of input words rejected by this automaton.
(b) Draw the transition table corresponding to this finite automaton.
(c) What language does this finite automaton recognize?

Hint. You may be able to identify a pattern by writing out all words up to a certain length (say, 4) and checking which words are accepted/rejected.
[10 marks] 4. A common feature of programming languages is the ability to write comments within one's code, often between delimiters like /\# and \#/. A valid comment is one that begins with /\#, ends with \#/, and has no other occurrences of \#/ between the delimiters.
Let $\Sigma=\{\mathrm{a}, \mathrm{b}, / / \#\}$ and consider the language $L_{\text {comment }}=\{w \mid w$ is a valid comment $\}$.
(a) Give a regular expression that represents the language $L_{\text {comment }}$.
(b) Construct a deterministic finite automaton that recognizes the language $L_{\text {comment }}$.

