
St. Francis Xavier University
Department of Computer Science

CSCI 356: Theory of Computing
Lecture 2: Context-Free Languages

Fall 2023

1 Context-Free Grammars

Recall that, in our discussion on regular languages, we introduced the notion of a regular expression. This
expression essentially performed a kind of pattern matching to accept text in a certain form and reject all
other text not of that form.

We can take this idea of matching patterns in text and modify it to work not just for individual words within
the text, but for the structure and composition of the entire text itself. This ability comes in the form of
grammars, which provide us with a set of rules that we can follow to produce words that belong to a certain
language. If a grammar produces all and only those words belonging to a certain language, then we say the
grammar generates that language.

The idea of using grammars with languages is nothing new; linguists have been using grammars to study
natural languages for centuries, dating as far back as the fourth century bce with the work of the Indian
grammarian Pān. ini. Only with the advent of computer science itself has the notion of grammars been
applied to formal languages and programming languages, starting with the work of American linguist Noam
Chomsky in the 1950s.

If you look at the specification manual for any programming language, you will likely find tucked away
somewhere in the documentation a grammar for that language. This grammar, which could number into the
tens of pages, describes precisely what the structure of a program written in that language should look like.
In fact, this grammar is exactly what the compiler relies on to check for syntax errors in your program!

As an example, let’s consider one small excerpt from the grammar given in the third edition of the Java
Language Specification:

Statement:
Block
assert Expression [: Expression] ;
if ParExpression Statement [else Statement]
for (ForControl) Statement
while ParExpression Statement
do Statement while ParExpression ;
try Block (Catches | [Catches] finally Block)
switch ParExpression { SwitchBlockStatementGroups }
synchronized ParExpression Block
return [Expression] ;
throw Expression ;
break [Identifier]
continue [Identifier]
;
StatementExpression ;
Identifier : Statement

CSCI 356: Theory of Computing
Lecture 2, Fall 2023 Page 2

This part of the Java grammar checks statement blocks such as assignments, if-else blocks, for loops, and
so on. All of the words written with an Uppercase letter or written in CamelCase correspond to rules, and
all of the words written in lowercase correspond to language keywords. For example, the if rule on the
fourth line checks that every if-else block in a program conforms to the syntax that the compiler expects: the
block begins with the keyword if together with some parenthesized expression, followed by some statement
or sequence of instructions, and ending with an optional else block.

1.1 Definition

The Java grammar is an example of a context-free grammar. Such a grammar consists of a set of rules that
we can use, in this instance, to generate valid programs in Java. These rules take on a very general form:
observe, for example, that we can replace the word Statement by a number of combinations of keywords
and other rules, as specified by each line of the grammar underneath the Statement label. This is where the
name “context-free” comes from: we don’t care about the context surrounding a particular bit of text when
we replace that text with something else.

Before we look at some more examples, let’s formalize the notion of a context-free grammar. To construct
a grammar, we need only four elements.

Definition 1 (Context-free grammar). A context-free grammar is a tuple (V,⌃, R, S), where

• V is a finite set of elements called nonterminal symbols;

• ⌃ is a finite set of elements called terminal symbols, where ⌃ \ V = ;;

• R is a finite set of rules, where each rule consists of a nonterminal on the left-hand side and a combi-
nation of nonterminals and terminals on the right-hand side; and

• S 2 V is the start nonterminal.

In a context-free grammar, the set of nonterminal symbols V correspond to parts of a word that we have
yet to “fill in” with terminal symbols from ⌃. The set of rules R tell us how we can perform this “filling in”.
If we have a rule of the form A ! ↵, then we can replace any instance of the symbol A in our word with
whatever symbols make up ↵. The start nonterminal S is self-explanatory; it is the first thing in our word
that we “fill in”.

Returning to our Java grammar example, we can see that (for example) some of the nonterminals in the
grammar include Statement, Block, Identifier, and ParExpression, while some of the terminals include
if, while, for, and ; (semicolon).

Importantly, we have in our definition of a context-free grammar that ⌃\V = ;; that is, the set of terminals
and the set of nonterminals must be disjoint. This is to prevent the grammar from confusing terminals and
nonterminals, and this is exactly why the Java language designers used uppercase letters in their nonterminals
and lowercase letters in their terminals.

1.2 Language of a Context-Free Grammar

The sequence of rule applications we follow beginning with the start nonterminal S and ending with a
completed word containing symbols from ⌃ is called a derivation. Each word of the form (V [⌃)⇤ produced
during a derivation is sometimes referred to as a sentential form.

For any nonterminal A and terminals u, w, and v, if we have a rule A ! w in our grammar and some step
of our derivation takes us from uAv to uwv, then we say that uAv yields uwv and we write uAv) uwv.
We can represent a sequence of “yields” relations using similar notation; given words x and y, if x = y or if
there exists a sequence x1, x2, . . . , xk where k � 0 such that

x) x1) x2) · · ·) xk) y,

then we write x)⇤ y. This is very similar to the Kleene star notation, where the star indicates zero or more
“yields” relations taking us from x to y.

CSCI 356: Theory of Computing
Lecture 2, Fall 2023 Page 3

With this, we can define the language of a grammar G over an alphabet ⌃ by L(G) = {w 2 ⌃⇤ | S)⇤ w}.
In other terms, the language of a grammar contains all words that can be derived by that grammar beginning
with the start nonterminal S.

Example 2. Consider the context-free grammar where V = {S,A}, ⌃ = {a, b}, and R contains two rules:

S ! aAb

A ! aAb | ✏

Using this context-free grammar, we can generate words like

S) aAb) a ✏ b = ab,

S) aAb) a aAb b) aa ✏ bb = aabb, and

S) aAb) a aAb b) aa aAb bb) aaa ✏ bbb = aaabbb,

and so on. For each step, the highlighted symbols indicate which symbols were added at that step. We get
things started by replacing the S nonterminal by aAb, and from there we may replace the A nonterminal as
many times as we like.

This context-free grammar generates all words over the alphabet ⌃ = {a, b} where the number of as is equal
to the number of bs, where there is at least one a and one b, and where all as come before any bs in the
word. Thus, the language of this grammar is La=b = {anbn | n � 1}.

Observe that the rule A in Example 2 included a vertical bar. This is simply a shorthand for writing multiple
rules where each rule contains A on the left-hand side. Writing A ! aAb | ✏ is therefore equivalent to writing

A ! aAb

A ! ✏

There are very few limitations we must abide by when we write rules for a context-free grammar. All we need
to ensure is that the left-hand side of each rule consists of exactly one nonterminal by itself. The right-hand
side of each rule can contain any combination of terminals and nonterminals, including the empty word ✏.

Example 3. Consider the context-free grammar where V = {S}, ⌃ = {(,)}, and R contains one rule:

S ! (S) | SS | ✏

This rule allows us to surround an occurrence of S with parentheses, to “duplicate” an occurrence of S, or
to replace some occurrence of S with ✏, e↵ectively removing that occurrence of S from the derivation.

Using this context-free grammar, we can generate a word like

S) SS) (S) S) ((S))S) ((✏))S) (())S) (()) (S)) (())(✏) = (())().

Again, the highlighted symbols indicate which symbols were added at a given step.

This context-free grammar generates all words over the alphabet ⌃ = {(,)} where each word contains
balanced parentheses : every opening parenthesis is matched by a closing parenthesis, and each pair of paren-
theses is correctly nested. We can express the language of the grammar as

L() = {w 2 {(,)}⇤ | all prefixes of w contain no more)s than (s, and |w|(= |w|)}.1
1The language of balanced parentheses is also known as the Dyck language.

