
CSCI 356: Theory of Computing
Lecture 2, Fall 2023 Page 4

1.3 Ambiguity

If we are given a derivation of a word for some context-free grammar, we need not always represent it in a
linear fashion like we did in the previous examples. We could alternatively represent it as a tree structure,
where the root of the tree corresponds to the start nonterminal S and each branch of the tree adds a new
nonterminal or terminal symbol. We refer to such trees as parse trees.

Parse trees are nothing new to linguists; the idea is used all the time to break down sentences or phrases
into their constituent components, like nouns, verbs, and so on. In doing so, linguists are able to study the
structures of sentences in di↵erent languages. For example, consider the following parse tree for an English
sentence:

S

NP

Det

the

Nom

Adj

intelligent

Nom

N

professor

VP

V

illustrated

NP

Det

a

Nom

Adj

beautiful

N

tree

Here, the sentence (S) is broken down into a noun phrase (NP) and a verb phrase (VP); the noun phrase is
broken down further into a determiner (Det) and a nominal (Nom); and so on. There are all kinds of rules
specifying exactly how we can break down English sentences in this way.

In every parse tree, the root of the tree is the start nonterminal S, the leaves of the tree contain terminal
symbols from ⌃ (or ✏), and all other vertices of the tree contain nonterminal symbols from V . If a parse tree
contains an internal (non-leaf) vertex A, and all the children of the vertex A are labelled a1, a2, . . . , an, then
the underlying grammar’s rule set must contain a rule of the form A ! a1a2 . . . an.

Example 4. Recall our derivation of the word (())() from the language of words with balanced parentheses
in Example 3. We can represent the derivation of that word by the following parse tree:

S

S

(S

(S

✏

)

)

S

(S

✏

)

For most grammars we deal with, there exists exactly one way to generate any given word in the language
of the grammar. However, this is not always the case. There are some grammars that allow us to generate
the same word in more than one way.

Perhaps one of the most well-known examples is the grammar generating the language of arithmetic expres-
sions. If you recall grade school mathematics, you’ll remember that there is an order of operations that
specify the order in which we should apply arithmetic operations in a given expression.2 We first evaluate
expressions in parentheses, then exponents, then multiplications and divisions, and finally additions and
subtractions.

2Sometimes referred to using the mnemonics BEDMAS, BIDMAS, BODMAS, or PEMDAS, depending on where you went
to school.

CSCI 356: Theory of Computing
Lecture 2, Fall 2023 Page 5

Let’s consider a simplified set of operations, where we only use parentheses, addition, and multiplication.
The grammar generating the language of arithmetic expressions using these three operators together with
the standard set of numbers is as follows:

S ! (S)

S ! S + S

S ! S ⇥ S

S ! num

If we consider the expression num⇥ num+ num, we discover that there exists more than one way to generate
this expression, depending on whether we apply the + rule or the ⇥ rule first. This is evidenced by the fact
that there exist two parse trees for the same expression:

S

S

S

num

⇥ S

num

+ S

num

S

S

num

⇥ S

S

num

+ S

num

We don’t need to do anything tricky in order to obtain these parse trees. In fact, both parse trees can be
obtained simply by applying rules to each nonterminal from left to right; that is, at some level of the parse
tree where there exists two nonterminals, we apply a rule to the first (left) nonterminal before the second
(right) nonterminal. This process is known as a leftmost derivation.

If there exists some word in the language of a grammar for which there is more than one leftmost derivation
of that word, then we say that the word is derived ambiguously. Likewise, the grammar producing that word
is itself ambiguous.

Definition 5 (Ambiguous context-free grammar). A context-free grammar G is ambiguous if there exists
some word w 2 L(G) that can be derived ambiguously.

Example 6. The grammar from Example 3 generating our language of words with balanced parentheses is
ambiguous. Consider again the word (())(). There exist two di↵erent parse trees corresponding to leftmost
derivations of this word; the left parse tree was given in Example 4 and the right parse tree is new:

S

S

(S

(S

✏

)

)

S

(S

✏

)

S

S

S

✏

S

(S

(S

✏

)

)

S

(S

✏

)

CSCI 356: Theory of Computing
Lecture 2, Fall 2023 Page 6

Removing Ambiguity

In some cases, if we have an ambiguous context-free grammar, we can create an equivalent context-free
grammar with no ambiguity. For example, recall our three-operation arithmetic grammar from earlier:

S ! (S)

S ! S + S

S ! S ⇥ S

S ! num

Nothing in this grammar forces us to use one rule before another, so we end up being able to derive the
same word via di↵erent sequences of rule applications. However, we can construct an unambiguous grammar
simply by adding a little more structure to our rules—specifically, by adding a few more nonterminals:

S ! E

E ! E + T | T
T ! T ⇥ F | F
F ! (E) | num

Now, each nonterminal plays a particular role. The nonterminal S, as usual, serves as our starting point
and produces an expression, E. Each expression consists of subexpressions E or additive terms T . Likewise,
each term consists of subterms T or multiplicative factors F . Finally, each factor can be either a num or a
parenthesized subexpression, starting the whole process over again.

We won’t verify here that this grammar is in fact equivalent to our original one, though we can intuit that
they each generate the same language. Su�ce it to say that, with this revised grammar, we’re able to ensure
that the addition rule is always applied before the multiplication rule.

Our revised grammar now allows us to draw one unambiguous parse tree for the expression num⇥num+num:

S

E

E

T

T

F

num

⇥ F

num

+ T

F

num

Inherent Ambiguity

Unfortunately, there is no general procedure or algorithm for removing ambiguity from a context-free gram-
mar; indeed, it isn’t even possible to remove ambiguity in some cases. Some context-free languages are
inherently ambiguous, meaning that any grammar generating the language will have some unavoidable am-
biguous component to it.

Example 7. Consider the language Ltwoequal = {aibjck | i, j, k � 0 and i = j or j = k} over the alphabet
⌃ = {a, b, c}. This language contains all words that have either the same number of as and bs or the same
number of bs and cs.

CSCI 356: Theory of Computing
Lecture 2, Fall 2023 Page 7

We can generate this language using the following grammar:

S ! S1 | S2

S1 ! S1c | A
A ! aAb | ✏
S2 ! aS2 | B
B ! bBc | ✏

The rules S1 and A generate words of the form anbncm and the rules S2 and B generate words of the form
ambncn, each where m,n � 0.

Now, consider words of the form anbncn, where n � 0. All words of this form belong to the language
Ltwoequal, but each such word has two distinct derivations in this grammar: it can be generated either by
the rules S1 and A, or by the rules S2 and B.

While the formal proof that this language is inherently ambiguous is quite long, we can intuitively see that
(for instance) any grammar generating this language must have rules similar to S1 and A to produce balanced
pairs of as and bs followed by some number of cs. We can make a similar argument for the rules S2 and B.
Thus, any grammar for this language will include some degree of ambiguity.

1.4 Normal Forms

Up to now, we’ve imposed no restrictions on the form of each rule in our context-free grammars. As long
as each rule of our context-free grammar looked like A ! ↵, where A is a nonterminal symbol and ↵ is a
combination of terminal and nonterminal symbols, we were happy.

However, computers (and, by extension, the people who program computers) like having structure. For
instance, a compiler for a programming language usually incorporates a context-free grammar into its work-
flow at some point during the compilation of a program, and having a highly-structured grammar makes the
compiler’s job of determining which rule to apply both easier and faster.

Therefore, at times, we might like to transform a context-free grammar into a normal form; that is, to modify
the grammar in such a way that each rule of the grammar follows a canonical form or template. There are
many normal forms to choose from, and each one comes with its own benefits. However, here we will focus
our attention on arguably the most popular normal form.

Chomsky Normal Form

The Chomsky normal form, as the name suggests, was first studied by Noam Chomsky in the late 1950s as
he attempted to develop a model of natural language using grammars. A grammar in Chomsky normal form
is one where each rule either has two nonterminal symbols or one terminal symbol on the right-hand side.

Definition 8 (Chomsky normal form). A context-free grammar is in Chomsky normal form if every rule in
the grammar is of one of the two following forms:

1. A ! BC for A,B,C 2 V with B,C 6= S; or

2. A ! a for A 2 V and a 2 ⌃.

Additionally, we may allow the rule S ! ✏.

The main benefit of converting a grammar into Chomsky normal form comes in how we can represent and
store derivations of words in memory. Since each rule derives either two nonterminal symbols or one terminal
symbol, every parse tree will have a branching factor of either 2 or 1. This fact allows us to use e�cient data
structures for representing binary trees in memory, as well as to apply e�cient algorithms to process parse
trees and derivations. Moreover, the number of steps in a derivation using a grammar in Chomsky normal
form is easy to bound: if the grammar generates a word w, then the derivation of w will contain |w| � 1
applications of a rule of the first form and |w| applications of a rule of the second form.

CSCI 356: Theory of Computing
Lecture 2, Fall 2023 Page 8

Example 9. Let ⌃ = {a, b}, and consider the following two grammars. Each grammar generates words
consisting of one b surrounded on either side by zero or more as. The grammar on the left is not in Chomsky
normal form. The grammar on the right is in Chomsky normal form, and it is equivalent to the grammar
on the left.

S ! AbA

A ! Aa | ✏
S0 ! TA | BA | AB | b
T ! AB

A ! AC | a
B ! b

C ! a

Every context-free grammar can be converted into a context-free grammar in Chomsky normal form, and
the conversion process consists of four steps:

1. START: Replace the start nonterminal.

Add a new start nonterminal S0 together with a new rule S0 ! S, where S is the start nonterminal of
the original grammar. This guarantees that S0 will not occur on the right-hand side of any rule.

2. EPS: Remove epsilon rules.

Remove all rules of the form A ! ✏, where A 6= S. For each occurrence of A on the right-hand side of
a rule in the original grammar, add a new rule with that occurrence of A removed from the right-hand
side; that is, convert all rules of the form X ! ↵A� to X ! ↵�, where ↵ and � are combinations
of nonterminal and terminal symbols. Note that this applies to each occurrence of A, so a rule of the
form X ! ↵A�A� would contribute three new rules: X ! ↵�A�, X ! ↵A��, and X ! ↵��.

If there exists a rule of the form X ! A, then add a new rule of the form X ! ✏ unless we previously
removed a rule of that form.

Repeat until all epsilon rules not involving the original start nonterminal are removed.

3. UNIT: Remove unit rules.

Unit rules are rules of the form A ! B, where A and B are nonterminal symbols. Remove all rules of
this form.

If there exists a rule of the form B ! ↵, where ↵ is a combination of nonterminal and terminal symbols,
then add a new rule A ! ↵ unless we previously removed a unit rule of that form.

Repeat until all unit rules are removed.

4. BIN: Remove rules with more than two nonterminal or terminal symbols on the right-hand side.

Replace each rule of the form A ! ↵1↵2 . . .↵k, where k � 3 and each ↵i is either a nonterminal or
terminal symbol, with a series of new rules A ! ↵1A1, A1 ! ↵2A2, . . . , Ak�2 ! ↵k�1↵k. Each Ai is
a new nonterminal symbol.

If ↵i is a terminal symbol in one of our new rules Ai�1 ! ↵iAi, then remove this rule, replace ↵i with
a new nonterminal symbol Bi, and add two new rules Bi ! ↵i and Ai�1 ! BiAi.

Example 10. Consider the following grammar not in Chomsky normal form:

S ! ASB

A ! aAS | a | ✏
B ! SbS | A | bb

We will convert this grammar to an equivalent grammar in Chomsky normal form.

CSCI 356: Theory of Computing
Lecture 2, Fall 2023 Page 9

1. START: Replace the start nonterminal.

Adding a new start nonterminal and the rule S0 ! S gives us the following:

S0 ! S

S ! ASB

A ! aAS | a | ✏
B ! SbS | A | bb

2. EPS: Remove epsilon rules.

The first epsilon rule we will remove is A ! ✏. Since A occurs on the right-hand side of two other
rules (S ! ASB and A ! aAS), removing this rule means we must add two new rules S ! SB and
A ! aS. Additionally, since we have a rule B ! A, we must add a new rule B ! ✏. This gives the
following:

S0 ! S

S ! ASB | SB

A ! aAS | a | aS

B ! SbS | A | bb | ✏

Next, we remove the epsilon rule B ! ✏ that we just added. Since B occurs on the right-hand side
of two other rules (S ! ASB and S ! SB), removing this rule means we must add two new rules
S ! AS and S ! S. This gives the following:

S0 ! S

S ! ASB | SB | AS | S

A ! aAS | a | aS
B ! SbS | A | bb

3. UNIT: Remove unit rules.

We first remove the unit rule B ! A. We do so by replacing A on the right-hand side of the rule with
everything that can be produced by a rule of the form A ! ↵:

S0 ! S

S ! ASB | SB | AS | S
A ! aAS | a | aS

B ! SbS | bb | aAS | a | aS

Next, we remove the unit rule S ! S. This change is more straightforward, as we don’t need to modify
the S rule in any other way:

S0 ! S

S ! ASB | SB | AS

A ! aAS | a | aS
B ! SbS | bb | aAS | a | aS

CSCI 356: Theory of Computing
Lecture 2, Fall 2023 Page 10

Lastly, we remove the unit rule S0 ! S. Again, we replace S on the right-hand side of the rule with
everything that can be produced by a rule of the form S ! ↵:

S0 ! ASB | SB | AS

S ! ASB | SB | AS

A ! aAS | a | aS
B ! SbS | bb | aAS | a | aS

4. BIN: Remove rules with more than two nonterminal or terminal symbols on the right-hand side.

Starting from the top, we replace the rule S0 ! ASB with the rules S0 ! AU1 and U1 ! SB:

S0 ! AU1 | SB | AS

S ! ASB | SB | AS

A ! aAS | a | aS
B ! SbS | bb | aAS | a | aS

U1 ! SB

Similarly, we replace the rule S ! ASB with the rules S ! AU2 and U2 ! SB:

S0 ! AU1 | SB | AS

S ! AU2 | SB | AS

A ! aAS | a | aS
B ! SbS | bb | aAS | a | aS

U1 ! SB

U2 ! SB

Next, we replace the rule A ! aAS with the rules A ! aU3 and U3 ! AS:

S0 ! AU1 | SB | AS

S ! AU2 | SB | AS

A ! aU3 | a | aS

B ! SbS | bb | aAS | a | aS

U1 ! SB

U2 ! SB

U3 ! AS

Moving along, we replace the rules B ! SbS and B ! aAS with the set of rules B ! SU4, B ! aU5,
U4 ! bS, and U5 ! AS:

S0 ! AU1 | SB | AS

S ! AU2 | SB | AS

A ! aU3 | a | aS

B ! SU4 | bb | aU5 | a | aS

U1 ! SB

U2 ! SB

U3 ! AS

U4 ! bS

U5 ! AS

Lastly, we replace all rules containing one terminal and one nonterminal symbol on the right-hand side.
We introduce two new rules V1 ! a and V2 ! b and make the appropriate changes to other rules:

S0 ! AU1 | SB | AS

S ! AU2 | SB | AS

A ! V1U3 | a | V1S

B ! SU4 | V2V2 | V1U5 | a | V1S

U1 ! SB

U2 ! SB

U3 ! AS

U4 ! V2S

U5 ! AS

V1 ! a

V2 ! b

