
CSCI 356: Theory of Computing
Lecture 2, Fall 2023 Page 11

2 Context-Free Languages

With our notion of a context-free grammar, it’s easy for us to define a context-free language. Just like we can
define a regular language to be a language represented by a regular expression, we can define a context-free
language in terms of a context-free grammar.

Definition 11 (Context-free language). If some language L is generated by a context-free grammar, then
L is context-free.

Thus, all of the languages in this lecture for which we constructed context-free grammars—the language of
words anbn, the language of balanced parentheses, the language of words aibjck where i = j or j = k—
are context-free languages. As a shorthand, we denote the class of languages generated by a context-free
grammar by CFG.

The class of context-free languages is remarkably less restrictive than the class of regular languages and, as
we’ve seen, context-freeness allows us to perform certain simple actions like counting or matching symbols.
Let’s now consider a couple of other examples of context-free languages and their grammars.

Example 12. Consider the language L = {a2ibicj+2 | i, j � 0} over the alphabet ⌃ = {a, b, c}. Here, we
can see that the counts of as and bs are related, while the number of cs is independent of the number of as
and bs.

Let’s construct a context-free grammar generating words in L. Evidently, we will need two kinds of rules:
one rule will generate the as and bs together, while the other rule will generate the cs. We can use the start
nonterminal to apply these rules in the correct order. Our context-free grammar will therefore look like the
following:

S ! UV

U ! aaUb | ✏
V ! cV | cc

Let’s now take a look at each rule in turn. The first rule, S, ensures that we apply the U rule before the V
rule. This in turn ensures that all as and bs occur before the cs in the generated word. The second rule, U ,
either recursively produces two as and one b or produces the empty word. This ensures that we maintain
the correct count of 2i as and i bs. Finally, the third rule, V , either recursively produces one c or produces
the symbols cc. This ensures that we have exactly j + 2 cs in our generated word.

Example 13. Recall our context-free language La=b = {anbn | n � 1}. Here, let’s consider a more general
language: Lmixeda=b = {w 2 {a, b}⇤ | |w|a = |w|b}. Observe that the main di↵erence with this language is
that the order of as and bs no longer matters; we just need the same count of as and bs. Can we construct
a context-free grammar for Lmixeda=b?

Since order no longer matters, we just need our context-free grammar to generate a pair of as and bs each
time we add terminal symbols. For this, we can use essentially the same rule as we used in our context-free
grammar for La=b: S ! aSb | bSa. We also need a rule that allows us to mix the order of as and bs; for
instance, to place two as or two bs next to each other instead of strictly nesting pairs. For this, we can use
a rule similar to one we included in our context-free grammar for L(): S ! SS.

Thus, our context-free grammar will look like the following:

S ! SS | aSb | bSa | ✏

3 Pushdown Automata

When we first introduced finite automata as a computational model for regular languages, we emphasized
the facts that finite automata have no memory, no storage, and no ability to return to a previously-read
symbol. Naturally, these restrictions limited the kinds of languages the model is able to recognize, and we
showed that such restrictions resulted in the model recognizing exactly the class of regular languages.

CSCI 356: Theory of Computing
Lecture 2, Fall 2023 Page 12

At the end of the previous lecture, we saw that there exist languages that are not regular, and therefore
are not recognized by finite automata. We know now that the next “step” of our language hierarchy is the
class of context-free languages. Thus, a new question arises: what kind of computational model is capable
of recognizing context-free languages?

Since every context-free language is generated by a context-free grammar, and since we know that context-
free grammars must “remember” which nonterminal and terminal symbols are being manipulated over the
course of a derivation, any model of computation recognizing context-free languages must include a form of
memory. What is the best form of memory to use in this situation? If we view a derivation as a parse tree,
then the derivation progresses as we go deeper into the parse tree, and we can easily model the depth of a
derivation using stack memory.

As a brief review, a stack is a data structure with two operations that manipulate data: push and pop.
Pushing a symbol to a stack adds it to the top of the stack and moves all other symbols one position down in
the stack. Conversely, popping a symbol from a stack removes it from the top and moves all other symbols
one position up. As a result, a stack provides last-in-first-out (LIFO) storage.3 We can view the symbol at
the top of the stack at any time during a computation, but we cannot view any other symbols in the stack
unless we pop the symbol currently at the top of the stack.

push a
====)

a

push b
====)

b
a

pop b
====)

a

push c
====)

c
a

push a
====) a

c
a

· · ·

Since we’re dealing with an abstract model of computation and not a real-world computer, we can make the
assumption that our stack size is unbounded ; that is, we can push as many symbols to the stack as we want
without worrying about running out of space.

Now that we have our form of storage established, we can define our model of computation. At its core, this
model is a finite automaton with a stack added to it. Since the automaton is now able to push symbols to
a stack, we give it an appropriate name: a pushdown automaton.4

3.1 Definition

In addition to reading a symbol of its input word on a transition, a pushdown automaton can read from
and write to the stack on the same transition. In order to perform this mixture of input and stack actions,
we specify two alphabets for a pushdown automaton: the input alphabet, which contains symbols used in
the input word, and the stack alphabet, which contains symbols the pushdown automaton can use in its
stack. This allows us to combine actions on the input word and actions on the stack in a single transition,
without risking confusion over the meaning of any particular alphabet symbol. The transitions of a pushdown
automaton may additionally use ✏ in place of either the input word action (i.e., when we don’t read a symbol
of the input word) or the stack action (i.e., when we don’t push to/pop from the stack). Just like we denoted a
finite automaton’s alphabet by ⌃, we will use ⌃ to denote a pushdown automaton’s input alphabet. Likewise,
we will use � to denote the stack alphabet.

In order for our model of computation to use two alphabets at once, we must modify its transition function
accordingly. Recall that a finite automaton (with epsilon transitions) transitions on a pair (q, a), where
q 2 Q and a 2 ⌃ [{✏}. By comparison, a pushdown automaton transitions on a tuple (q, a, b), where
q 2 Q, a 2 ⌃ [{✏}, and b 2 � [{✏}. Thus, a pushdown automaton uses both the current symbol of its
input word (or epsilon) as well as the top symbol of its stack (or epsilon) to determine to which state it
will transition. After transitioning, the pushdown automaton will be in a possibly-di↵erent state, and it will
have a possibly-di↵erent symbol at the top of its stack.

Lastly, a pushdown automaton has no mechanism for detecting whether or not its stack is empty. To avoid

3By comparison, a data structure like a queue would provide first-in-first-out (FIFO) storage.
4The name “pushdown automaton” doesn’t specifically come from its ability to push symbols, but rather from an older term

for a stack: a pushdown store.

CSCI 356: Theory of Computing
Lecture 2, Fall 2023 Page 13

any potential issues, we often incorporate a special “bottom of stack” symbol ? into the transitions of a
pushdown automaton in such a way that ? is both the first symbol pushed to the stack and the last symbol
popped from the stack.5

Having established all of the technical details, we can now formulate the definition of a pushdown automaton.

Definition 14 (Pushdown automaton). A pushdown automaton is a tuple (Q,⌃,�, �, q0, F), where

• Q is a finite set of states;

• ⌃ is the input alphabet ;

• � is the stack alphabet ;

• � : Q⇥ (⌃ [{✏})⇥ (� [{✏}) ! P (Q⇥ (� [{✏})) is the transition function;

• q0 2 Q is the initial or start state; and

• F ✓ Q is the set of final or accepting states.

You may have noticed in our definition that the transition function maps to the power set of state/stack sym-
bol pairs, which makes the pushdown automaton nondeterministic. This was not done by mistake. Unlike
finite automata, where the deterministic and nondeterministic models are equivalent in terms of recognition
power, deterministic pushdown automata actually recognize fewer languages than nondeterministic push-
down automata. In the interest of full generality, then, we will take all of our pushdown automata to be
nondeterministic.

Example 15. Consider a pushdown automaton M where Q = {q0, q1, q2, q3}, ⌃ = {a, b}, � = {?, A},
q0 = q0, F = {q3}, and � is specified by the following table:

⌃: a b ✏
�: ? A ✏ ? A ✏ ? A ✏
q0 — — — — — — — — {(q1,?)}
q1 — — {(q1, A)} — {(q2, ✏)} — — — —
q2 — — — — {(q2, ✏)} — {(q3, ✏)} — —
q3 — — — — — — — — —

In the transition function table, the top row indicates the input symbol being read and the second-from-top
row indicates the symbol to be popped from the stack. Each entry of the table is an ordered pair where the
first element is the state being transitioned to and the second element is the symbol being pushed to the
stack.

The pushdown automaton M can be represented visually as follows:

q0start q1 q2 q3
✏, ✏ 7! ?

a, ✏ 7! A

b, A 7! ✏

b, A 7! ✏

✏,? 7! ✏

Notice that each transition has a label of the form a,B 7! C; this means that, upon reading an input symbol
a and popping a symbol B from the stack, the pushdown automaton pushes a symbol C to the stack.

Between states q0 and q1, the pushdown automaton pushes the symbol ? to the stack to act as the “bottom
of stack” symbol. In state q1, the pushdown automaton reads some number of as and pushes the same
number of As to the stack. Between states q1 and q2, as well as in state q2, the pushdown automaton reads
some number of bs and pops the same number of As from the stack. Finally, between states q2 and q3, the
pushdown automaton pops the “bottom of stack” symbol ? from the stack.

5Strictly speaking, we do not require a special symbol to mark the bottom of the stack. Pushdown automata can accept
either by final state or by empty stack, and as it turns out, the two methods of acceptance are equivalent. Here, we will follow
the “accept by final state” convention.

CSCI 356: Theory of Computing
Lecture 2, Fall 2023 Page 14

After some observation, we can see that our pushdown automaton accepts all input words of the form anbn

where n � 1.

3.2 Computations and Accepting Computations

Let us now consider precisely what it means for a pushdown automaton to accept an input word. As we
had with finite automata, one of the main conditions for acceptance is that there exists some sequence of
states through the automaton where it begins reading its input word in an initial state and finishes reading
in an accepting state. Since pushdown automata also come with a stack, though, we must account for the
contents of the stack over the course of the computation. Specifically, we assume that the stack is empty
at the beginning of the computation and, on each transition, the pushdown automaton can modify the top
symbol of its stack appropriately.

Definition 16 (Accepting computation of a pushdown automaton). Let M = (Q,⌃,�, �, q0, F) be a push-
down automaton, and let w = w0w1 . . . wn�1 be an input word of length n where w0, w1, . . . , wn�1 2 ⌃. The
pushdown automaton M accepts the input word w if there exists a sequence of states r0, r1, . . . , rn 2 Q and
a sequence of stack contents s0, s1, . . . , sn 2 �⇤ satisfying the following conditions:

1. r0 = q0 and s0 = ✏;

2. (ri+1, b0) 2 �(ri, wi, b) for all 0 i (n� 1), where si = bt and si+1 = b0t for some b, b0 2 � [{✏} and
t 2 �⇤; and

3. rn 2 F .

The second condition is rather notation-heavy, but the underlying idea describes exactly how a pushdown
automaton transitions between states: starting in a state ri with a symbol b at the top of the stack, the
pushdown automaton reads an input symbol wi and pops the symbol b from the stack. The transition
function then sends the pushdown automaton to a state ri+1 and pushes the symbol b0 to the stack.

Indeed, the second condition corresponds exactly to having the following transition in the pushdown au-
tomaton:

. . . ri ri+1 . . .
wi, b 7! b0

3.3 Language of a Pushdown Automaton

Pushdown automata recognize languages just as finite automata do, and the set of all input words accepted
by a pushdown automaton is referred to as the language of that automaton. We denote the class of languages
recognized by a pushdown automaton by PDA.

Example 17. Consider L(), our language of balanced parentheses from earlier. Suppose ⌃ = {(,)} and
� = {?, P}. A pushdown automaton recognizing this language is as follows:

q0start q1 q2
✏, ✏ 7! ?

(, ✏ 7! P

), P 7! ✏

✏,? 7! ✏

As the transitions show, after pushing the “bottom of stack” symbol ? to the stack, the pushdown automaton
reads left and right parentheses. Every time a left parenthesis (is read, the pushdown automaton pushes a
symbol P to the stack. Likewise, every time a right parenthesis) is read, the pushdown automaton pops a
symbol P from the stack to account for some left parenthesis being matched.

