
CSCI 356: Theory of Computing
Lecture 2, Fall 2023 Page 15

Note that, if the input word contains more right parentheses than left parentheses, then the pushdown
automaton will not be able to pop a symbol P from the stack. Similarly, if the input word contains more left
parentheses than right parentheses, then it will not be able to pop the “bottom of stack” symbol ? from the
stack. In either case, it becomes stuck in state q1 and unable to accept the input word.

Example 18. Consider the language Ltwoequal = {aibjck | i, j, k � 0 and i = j or j = k} over the alphabet
⌃ = {a, b, c}. A pushdown automaton recognizing this language must have two “branches”: one branch to
handle the case where i = j, and one branch to handle the case where j = k. Since we don’t know in advance
which branch we will need to take, we can use the nondeterminism inherent in the pushdown automaton
model.

A pushdown automaton recognizing this language would therefore look like the following, where the upper
branch handles the case i = j and the lower branch handles the case j = k:

q0start

q1 q2 q3

q4 q5 q6 q7

✏, ✏ 7! ?

✏, ✏ 7! ?

a, ✏ 7! A

✏, ✏ 7! ✏

b, A 7! ✏

✏,? 7! ✏

c, ✏ 7! ✏

a, ✏ 7! ✏

✏, ✏ 7! ✏

b, ✏ 7! B

✏, ✏ 7! ✏

c, B 7! ✏

✏,? 7! ✏

4 Equivalence of Models

You may recall from our discussion of regular languages that we proved a couple of exciting results: a
language L is regular if and only if there exists a finite automaton recognizing L, and a language L is regular
if and only if there exists a regular expression matching words in L. These two results allowed us to establish
Kleene’s theorem, which brought together all of our di↵erent representations of regular languages.

Now that we’re focusing on context-free languages, and now that we have two ways of representing context-
free languages—namely, context-free grammars and pushdown automata—it would be nice to establish a
connection between the two representations. This brings us to yet another exciting result, which will be the
focus of this section. Since the overall proof is quite lengthy, we will split the proof of the main result into
two parts.

4.1 CFG) PDA

For the first half of our main result, we will show that we can convert any context-free grammar into a
pushdown automaton recognizing the language generated by the grammar. Specifically, given a context-free
grammar G, we will construct a pushdown automaton M that functions as a top-down parser6 on its input
word w; that is, beginning with the start nonterminal S, M will repeatedly apply rules from R to check
whether w can be generated via a leftmost derivation. If so, then M will accept w.

6We could alternatively construct M to act as a bottom-up parser, where it applies rules backward starting from the input
word w to see if the start nonterminal S can be reached. The outcome is the same, however, so we will not discuss this
alternative construction here.

CSCI 356: Theory of Computing
Lecture 2, Fall 2023 Page 16

Note that, for the purposes of this proof, we will “condense” multiple transitions of our pushdown automaton
into one transition; that is, if we have some sequence of transitions

qi qj
x,A 7! B ✏, ✏ 7! C ✏, ✏ 7! D

then we will depict this sequence of transitions as one single transition of the form

qi qj
x,A 7! BCD

and we replace the symbol A on the stack with the symbols BCD, in that order from bottom to top.

Lemma 19. Given a context-free grammar G generating a language L(G), there exists a pushdown automa-
ton M such that L(M) = L(G).

Proof. Suppose we are given a context-free grammarG = (V,⌃G, R, S). We construct a pushdown automaton
M = (Q,⌃,�, �, q0, F) that recognizes the language generated by G in the following way:

• The set of states is Q = {qS , qR}. The first state, qS , corresponds to the point during the computation
at which the context-free grammar G begins to generate the word. The second state, qR, corresponds
to the remainder of the computation where G applies rules from its rule set.

• The input alphabet is ⌃ = ⌃G. If M accepts its input word, then the word could be generated by G,
and therefore it must consist of terminal symbols.

• The stack alphabet is � = V [⌃G. We will use the stack of M to keep track of where we are in the
leftmost derivation of the word.

• The initial state is q0 = qS .

• The final state is F = {qR}.

• The transition function � consists of three types of transitions:

1. Initial transition: �(qS , ✏, ✏) = {(qR, S)}. This transition initializes the stack by pushing to it
the start nonterminal S, and then moves to the state qR for the remainder of the computation.

2. Nonterminal transition: �(qR, ✏, A) = {(qR,↵n . . .↵2↵1)} for each rule of the form A !
↵1↵2 . . .↵n, where A 2 V and ↵i 2 V [⌃G for all i. Transitions of this form simulate the
application of a given rule by popping the left-hand side (A) from the stack and pushing the
right-hand side (↵1↵2 . . .↵n) to the stack in its place in reverse order. Pushing the symbols in
reverse ensures that the next symbol we need to read (↵1) is at the top of the stack.

Note that if n = 0, then the transition will be of the form �(qR, ✏, A) = {(qR, ✏)}.

3. Terminal transition: �(qR, c, c) = {(qR, ✏)} for each terminal symbol c 2 ⌃G. Transitions of
this form compare a terminal symbol on the stack to the current input word symbol. If the two
symbols match, then the computation continues.

During the computation, after the initial transition is followed, M follows either nonterminal transitions or
terminal transitions until its stack is empty or it runs out of input word symbols. If a nonterminal symbol A
is at the top of the stack, M nondeterministically chooses one of the rules for A and follows the corresponding
transition. If a terminal symbol c is at the top of the stack, M performs the comparison between input and
stack symbol as described earlier.

By this construction, we can see that M finishes its computation with an empty stack and no input word
symbols of w left to read whenever S)⇤ w, and so M accepts the input word w if w can be generated by
the context-free grammar G. Therefore, L(M) = L(G) as desired.

CSCI 356: Theory of Computing
Lecture 2, Fall 2023 Page 17

Visually, we can think of the pushdown automaton constructed in the proof of Lemma 19 in the following
way, where the number of each transition corresponds to its type:

qSstart qR
1. ✏, ✏ 7! S 2. ✏, A 7! ↵n . . .↵2↵1

2. ✏, A 7! ✏
3. c, c 7! ✏

Note that we don’t require a “bottom of stack” symbol ? for this pushdown automaton, since we’re only
using the stack to keep track of where we are in the grammar’s derivation.

Example 20. Consider the following context-free grammar G, where V = {S,A} and ⌃G = {0, 1, #}:

S ! 0S1 | A
A ! #

This grammar generates words of the form 0n#1n, where n � 0.

We convert the context-free grammar G to a pushdown automaton M. Take Q = {qS , qR}, ⌃ = ⌃G,
� = V [⌃G, q0 = qS , and F = {qR}. Finally, add the following transitions to �:

• �(qS , ✏, ✏) = {(qR, S)}. This initial transition pushes the start nonterminal S to the stack.

• �(qR, ✏, S) = {(qR, 1S0), (qR, A)}. These nonterminal transitions account for the S rules.

• �(qR, ✏, A) = {(qR, #)}. This nonterminal transition accounts for the A rule.

• �(qR, 0, 0) = {(qR, ✏)}, �(qR, 1, 1) = {(qR, ✏)}, and �(qR, #, #) = {(qR, ✏)}. These terminal transitions
match the terminal symbols on the stack to the input word symbols.

This pushdown automaton M looks like the following:

qSstart qR
✏, ✏ 7! S ✏, S 7! 1S0 0, 0 7! ✏

✏, S 7! A 1, 1 7! ✏
✏, A 7! # #, # 7! ✏

As an illustration of the computation of M, let’s look at the stack as M reads an example input word 00#11.
We can see that G generates this word by the derivation S) 0S1) 00S11) 00A11) 00#11.

00#11

S

00#11

0

S
1

00#11

S
1

00#11

0

S
1

1

00#11

S
1

1

00#11

A
1

1

00#11

#

1

1

00#11

1

1

00#11

1

00#11 00#11

4.2 PDA) CFG

Now, we consider the other half of our main result. In order to convert a pushdown automaton to a context-
free grammar, we must first ensure the pushdown automaton has certain properties: namely, the pushdown
automaton must have a single accepting state, it must empty its stack before accepting, and each transition
of the pushdown automaton must either push to or pop from the stack, but not both simultaneously. Let
us refer to a pushdown automaton with these properties as a simplified pushdown automaton.

Fortunately, it’s easy to convert from a pushdown automaton to a simplified pushdown automaton.

CSCI 356: Theory of Computing
Lecture 2, Fall 2023 Page 18

• To ensure the pushdown automaton has a single accepting state, we make each original accepting state
non-accepting and add epsilon transitions from those states to a new single accepting state.

=) ✏, ✏ 7! ✏

✏, ✏ 7! ✏

✏, ✏ 7! ✏

• To ensure the pushdown automaton empties its stack before accepting, we add a state immediately
before the accepting state that removes all symbols from the stack.

=)

✏, A 7! ✏
for each A 2 �

✏, ✏ 7! ✏

• To ensure that each transition of the pushdown automaton either pushes to or pops from the stack,
but not both, we split each transition that both pushes and pops into two separate transitions.

x,A 7! B =) x,A 7! ✏ ✏, ✏ 7! B

Additionally, if we have an epsilon transition that neither pushes nor pops, then we replace it with two
“dummy” transitions that push and then immediately pop the same stack symbol.

x, ✏ 7! ✏ =) x, ✏ 7! A ✏, A 7! ✏

With a simplified pushdown automaton, we can now perform the conversion to a context-free grammar.

Lemma 21. Given a simplified pushdown automaton M recognizing a language L(M), there exists a context-
free grammar G such that L(G) = L(M).

Proof. Suppose we are given a simplified pushdown automatonM = (Q,⌃,�, �, q0, qaccept). We will construct
a context-free grammar G = (V,⌃G, R, S) that generates the language recognized by M.

For each pair of states p and q in M, our grammar will include a rule Apq that simulates the computation of
M starting in state p with some stack contents and ending in state q with the same stack contents. (Note
that the stack may be manipulated during this computation; we just ensure that the contents of the stack
are the same at the beginning and the end.)

We construct G in the following way:

• The set of nonterminal symbols is V = {Apq | p, q,2 Q}.

• The set of terminal symbols is ⌃G = ⌃.

• The start nonterminal is S = Aq0qaccept (i.e., the rule corresponding to the computation starting in
state q0 and ending in state qaccept).

CSCI 356: Theory of Computing
Lecture 2, Fall 2023 Page 19

• The set of rules R consists of three types of rules:

1. For each state q 2 Q, add the rule Aqq ! ✏ to R.

q

2. For each triplet of states p, q, r 2 Q, add the rule Apr ! ApqAqr to R.

p q r

3. For each quadruplet of states p, q, r, s 2 Q, input symbols a, b 2 ⌃[{✏}, and stack symbol T 2 �,
if (q, T) 2 �(p, a, ✏) and (s, ✏) 2 �(r, b, T), then add the rule Aps ! aAqrb to R.

p q

r s

a, ✏ 7! T

b, T 7! ✏

The first type of rule is a “dummy” rule that essentially corresponds to staying in the state q and adding
nothing to the derivation. The second type of rule breaks down the overall computation into smaller com-
ponents, taking into account intermediate states. Finally, the third type of rule adds terminal symbols to
the derivation depending on the components of the overall computation.

With these rules, we can establish that the rule Aq0qaccept generates a word w if and only if, starting in the
state q0 with an empty stack, the computation of M on w ends in the state qaccept also with an empty stack.
Therefore, w is generated by the context-free grammar G if M accepts w, and L(G) = L(M) as desired.

Example 22. Consider the following simplified pushdown automaton M, where ⌃ = {0, 1} and � = {X, Y}:

q0start q1 q2 q3 q4
✏, ✏ 7! ?

0, ✏ 7! X
1, ✏ 7! Y

✏, ✏ 7! X ✏, X 7! ✏

0, Y 7! ✏
1, X 7! ✏

✏,? 7! ✏

This pushdown automaton recognizes words of the form w · wR, where w is w with 0s and 1s swapped.

We convert the pushdown automatonM to a context-free grammarG. Let V = {A00, A01, A02, A03, A04, A11,
A12, A13, A14, A22, A23, A24, A33, A34, A44} and take ⌃G = ⌃. We also take S = A04, since q0 is the initial
state and q4 is the accepting state of M. Finally, we add the following rules to the rule set R:

• Type 1 rules: A00 ! ✏, A11 ! ✏, A22 ! ✏, A33 ! ✏, and A44 ! ✏.

• Type 2 rules: A01 ! A00A01 | A01A11, A02 ! A00A02 | A01A12 | A02A22, A03 ! A00A03 | A01A13 |
A02A23 | A03A33, A04 ! A00A04 | A01A14 | A02A24 | A03A34 | A04A44, A12 ! A11A12 | A12A22,
A13 ! A11A13 | A12A23 | A13A33, A14 ! A11A14 | A12A24 | A13A34 | A14A44, A23 ! A22A23 |
A23A33, A24 ! A22A24 | A23A34 | A24A44, and A34 ! A33A34 | A34A44.

• Type 3 rules: A13 ! 0A131 | 1A130 | ✏A22✏ (or just A22) and A04 ! ✏A13✏ (or just A13).

As an illustration, let’s see how G derives an example input word 001011. Beginning from the start nonter-
minal A04, the derivation proceeds in the following way:

A04) A13) 0A131) 0 0A131 1) 00 1A130 11) 001 A22 011) 001 ✏ 011 = 001011.

