
St. Francis Xavier University
Department of Computer Science

CSCI 356: Theory of Computing
Lecture 4: Decidability and Undecidability

Fall 2023

1 Decision Problems

One important aspect of studying various models of computation is determining precisely what kinds of
questions about that model can be answered algorithmically. For example, does there exist an algorithm
that can tell us whether or not a deterministic finite automaton accepts a given input word?

In our previous lecture, we introduced the notions of decidable and semidecidable languages. Using the
terminology we’ve developed for defining and reasoning about languages, we can talk more generally not just
about decidable languages, but about decidable problems for our various models of computation.

A decision problem is a problem for which each input instance corresponds to either a “yes” or a “no”
answer. At its core, a decision problem is a language, and the elements of the language are instances
with “yes” answers. Each element of the language is an encoding of whatever model of computation we’re
considering, in some cases with an input word given to that model: in the case of regular languages, we use
encodings of finite automata, and so on.

If there exists a decision algorithm that produces the correct “yes” or “no” answer for any instance of a given
decision problem, and the algorithm halts on all inputs, then we say that the decision problem is decidable.
If no such decision algorithm exists, then we say that the decision problem is undecidable.1

There are a number of common decision problems that we can ask about a model of computation X. The
main decision problems we will focus on here are as follows:

• the membership problem: AX = {hB, wi | B is an X that accepts input word w};

• the emptiness problem: EX = {hBi | B is an X and L(B) = ;};

• the universality problem: UX = {hBi | B is an X and L(B) = ⌃⇤
}; and

• the equivalence problem: EQX = {hB, Ci | B and C are both X and L(B) = L(C)}.

In this lecture, then, we will get our first taste of “programming” a Turing machine to solve these decision
problems, without having to construct the machine explicitly. We no longer need to specify exactly how
the Turing machine is constructed, since the Church–Turing thesis tells us that any function that can be
computed by an algorithm can also be computed by a Turing machine.

2 Decidable Problems for Regular Languages

We begin by considering our common decision problems applied to models of computation that recognize
the class of regular languages. Regular languages (and the associated models that recognize such languages)
are very useful for practical applications since, as we will see, each of the common decision problems are
decidable for this class. The downside, of course, is that the class of regular languages is much smaller than
the other language classes we know, which in turn limits our expressive power.

1Note that “undecidable” doesn’t mean the decision problem is impossible; “undecidable” only means “not decidable”, as in
“no decision algorithm exists that always halts and gives a yes/no answer”. In this sense, “undecidable” has a meaning closer
to our notion of semidecidability, where an algorithm may exist that gives a yes/no answer but doesn’t halt on all inputs.

CSCI 356: Theory of Computing
Lecture 4, Fall 2023 Page 2

2.1 Membership Problem

For our first result, we will focus on the membership problem, and we will show that there exists an algorithm
that allows us to determine whether or not some deterministic finite automaton B accepts an input word w.

The technique we will apply in the proof of this result (and others) involves the use of a Turing machine to
simulate the computation of the finite automaton. Then, whether the finite automaton accepts or doesn’t
accept the input word, the Turing machine returns the same result.

Theorem 1. ADFA is decidable.

Proof. Construct a Turing machine MADFA that takes as input hB, wi, where B is a deterministic finite
automaton and w is the input word to B, and performs the following steps:

1. Simulate B on input w.

2. If the simulation ends in an accepting state of B, then accept. Otherwise, reject.

Since we know also that we can convert from nondeterministic finite automata to deterministic finite au-
tomata, and from regular expressions to deterministic finite automata, we get similar positive decidability
results for these models.

Corollary 2. ANFA is decidable.

Proof. Given a nondeterministic finite automaton B, convert it to an equivalent deterministic finite automa-
ton B

0 and run MADFA from the proof of Theorem 1 on input hB0
, wi.

Corollary 3. ARE is decidable.

Proof. Given a regular expression R, convert it to an equivalent deterministic finite automaton S and run
MADFA from the proof of Theorem 1 on input hS, wi.

Since a decision problem being decidable for the class DFA implies that it is also decidable for the classes
NFA and RE, we will only focus on proofs for the class DFA going forward.

2.2 Emptiness Problem

Let’s now turn to the emptiness problem. What does it mean for the language of a finite automaton to be
empty? If there exists no path from the initial state of the finite automaton to a final state, then the finite
automaton can’t accept any words. In this case, then, its language will be empty.

We will use this idea in the algorithm to decide the emptiness problem for deterministic finite automata.
Since every finite automaton has a finite set of states, we can traverse the transitions of the finite automaton
starting from the initial state and mark each state as we encounter it. If, by the end of this traversal, we
never mark a final state, then this implies there exists no path from the initial state to any final state.

Theorem 4. EDFA is decidable.

Proof. Construct a Turing machine MEDFA that takes as input hBi, where B is a deterministic finite au-
tomaton, and performs the following steps:

1. Mark the initial state of B.

2. Repeat until no new states are marked:

(a) Mark all states that have an incoming transition from any previously-marked state.

3. If no final state of B is marked, then accept. Otherwise, reject.

CSCI 356: Theory of Computing
Lecture 4, Fall 2023 Page 3

2.3 Universality Problem

We now move on to considering the universality problem, which is closely related to the emptiness problem.
In fact, the two problems are complementary: if L = ⌃⇤, then L = ;, where L denotes the complement of
the language L. Therefore, all we need to decide the universality problem is a way of complementing the
language of a deterministic finite automaton. Then, we can simply reuse the Turing machine MEDFA that
we specified earlier.

Fortunately, it is quite straightforward to show that the class of languages recognized by deterministic finite
automata is closed under complement.

Lemma 5. The class DFA is closed under the operation of complement.

Proof. Suppose we are given a deterministic finite automaton A = (Q,⌃, �, q0, F). The language of this
automaton, L(A), consists of all words that take us from the initial state q0 to a final state in the subset F .
Therefore, the complement of L(A) consists of all words that do not take us to a final state.

We construct a finite automaton A
0 = (Q,⌃, �, q0, F 0) recognizing the language L(A) by taking F

0 = Q \ F ;
that is, all non-final states in A are final states in A

0, and vice versa.

With our procedure to complement the language of a deterministic finite automaton, we can now decide
the universality problem using the same algorithm that we constructed to decide the emptiness problem. In
order to decide whether L(B) = ⌃⇤, we simply decide whether L(B) = ;.

Theorem 6. UDFA is decidable.

Proof. Construct a Turing machine MUDFA that takes as input hBi, where B is a deterministic finite au-
tomaton, and performs the following steps:

1. Convert B to a deterministic finite automaton B
0 recognizing the language L(B) using the construction

from the proof of Lemma 5.

2. Run MEDFA from the proof of Theorem 4 on input hB0
i.

3. If MEDFA accepts, then accept. Otherwise, reject.

2.4 Equivalence Problem

Finally, we consider the equivalence problem. Given two deterministic finite automata B and C, how can we
test whether L(B) = L(C)? In theory, we could take all the words in L(B) and give them as input to C, and
vice versa. However, this won’t work out very well if either of L(B) or L(C) is infinite.

Instead, we’ll make the following observation: if L(B) = L(C), then every word in both languages will belong
to the intersection of the two languages. That is, no word will belong only to one of the two languages. Thus,
in order to test whether two languages are equivalent, we just need to test whether the non-intersecting parts
of each language are empty!

The “non-intersecting part” of two languages is more properly referred to as the symmetric di↵erence of the
languages. Given two languages L(B) and L(C), their symmetric di↵erence is the language

L(B)4L(C) =
⇣
L(B) \ L(C)

⌘
[

⇣
L(B) \ L(C)

⌘
.

CSCI 356: Theory of Computing
Lecture 4, Fall 2023 Page 4

We can illustrate the symmetric di↵erence of L(B) and L(C) using a Venn diagram as follows:

L(B) L(C)

Before we continue, note that the symmetric di↵erence is defined using three operations: union, complement,
and intersection. We know that the class of regular languages is closed under union and complement, but
what about intersection? Fortunately, proving closure under intersection is again straightforward, so we’ll
do that here.

Lemma 7. The class DFA is closed under the operation of intersection.

Proof. Suppose we are given two deterministic finite automata A and B recognizing languages L(A) and
L(B), respectively. By De Morgan’s laws, we know that

L(A) \ L(B) = L(A) [L(B).

Since L(A) and L(B) are regular, we know that L(A) and L(B) are regular by closure under complement.

We also know that L(A) [L(B) is regular by closure under union. Therefore, L(A) [L(B) is regular again
by closure under complement, and so L(A) \ L(B) is regular.

Since we now know that the class of regular languages is closed under each of union, complement, and
intersection, we can construct a deterministic finite automaton D whose language is L(D) = L(B)4L(C).
We will use this finite automaton D in our decision algorithm for the equivalence problem.

The idea behind our decision algorithm for the equivalence problem, as we mentioned before, is to test
equivalence by testing the emptiness of the symmetric di↵erence language. If L(D) is empty, then we know
that all words belong to the intersection of L(B) and L(C), and therefore L(B) = L(C).

Theorem 8. EQDFA is decidable.

Proof. Construct a Turing machine MEQDFA that takes as input hB, Ci, where B and C are deterministic
finite automata, and performs the following steps:

1. Construct a deterministic finite automaton D recognizing the language L(D) = L(B)4L(C).

2. Run MEDFA from the proof of Theorem 4 on input hDi.

3. If MEDFA accepts, then accept. Otherwise, reject.

3 Decidable Problems for Context-Free Languages

Moving on to the class of context-free languages, we will again consider each of the common decision problems,
but this time applied to the context-free grammar model. We could alternatively consider each decision
problem applied to the pushdown automaton model, but if we were to do that, we would need to manage
the stack of the machine as we simulate its computation. By comparison, we can simulate a derivation using
a context-free grammar simply by applying the rules of the grammar appropriately. Since we know that
context-free grammars and pushdown automata are equivalent in terms of recognition power, we will make
our lives easier and work with grammars here.

CSCI 356: Theory of Computing
Lecture 4, Fall 2023 Page 5

3.1 Membership Problem

As before, we will begin by considering the membership problem. If we’re given an input hG,wi, where G is
a context-free grammar and w is a word over the grammar’s terminal alphabet ⌃, the membership problem
asks whether G is capable of generating the word w.

The näıve approach to determine whether G generates w checks every possible derivation using the rules of
G. However, this isn’t a good approach, since we may have to check infinitely-many derivations. In fact, if
we tried this approach and G actually couldn’t generate w, then our decision algorithm would never halt!
As a result, this approach semidecides the problem, but it doesn’t decide the problem.

We must therefore ensure that we only check some finite number of derivations using the rules of G. Thinking
back to our discussion of context-free grammars in Chomsky normal form, we made an important observation
that will help us greatly in this regard: if a grammar in Chomsky normal form generates a word w, then
the derivation of w will take 2|w| � 1 steps. This allows us to place an upper bound on the length of the
derivation.

Our decision algorithm, then, will convert its grammar to Chomsky normal form and check only derivations
requiring 2|w|�1 steps. If w can indeed be generated by G, then its derivation will be found by the algorithm.

Theorem 9. ACFG is decidable.

Proof. Construct a Turing machine MACFG that takes as input hG,wi, where G is a context-free grammar
and w is a word, and performs the following steps:

1. Convert G to an equivalent grammar G0 in Chomsky normal form.

2. (a) If |w| = 0, then list all derivations using G
0 that take a single step.

(b) If |w| � 1, then list all derivations using G
0 that take 2|w|� 1 steps.

3. If any of these derivations generate w, then accept. Otherwise, reject.

With our Turing machine MACFG, we can obtain an important corollary connecting the class of context-
free languages to the class of decidable languages recognized by Turing machines. Since MACFG is a Turing
machine simulating the computation of a context-free grammar, we can “recognize” the context-free language
generated by that grammar using a Turing machine.

Here, it becomes more evident why we chose context-free grammars as our model in this section instead
of pushdown automata. If we converted a pushdown automaton to a nondeterministic Turing machine,
then we could convert it to an equivalent deterministic Turing machine with no problems. However, we
can’t tell in advance whether some branch of the pushdown automaton’s computation tree goes on forever
without accepting, and as a result, we can’t guarantee that our Turing machine decides its language. Thus,
instead of worrying about this issue, we’ll simply use the machine we already have to decide membership for
context-free grammars, since we know that this machine is guaranteed to halt.

Corollary 10. Every context-free language is also a decidable language.

Proof. Construct a Turing machine MG that takes as input hG,wi, where G is a context-free grammar and
w is a word, and performs the following steps:

1. Run MACFG from the proof of Theorem 9 on input hG,wi.

2. If MACFG accepts, then accept. Otherwise, reject.

3.2 Emptiness Problem

For the emptiness problem, we again have a näıve algorithm to check whether L(G) = ; for some context-free
grammar G: just try to generate all words w over the terminal alphabet ⌃. This is, of course, not a good

CSCI 356: Theory of Computing
Lecture 4, Fall 2023 Page 6

approach for the same reason as last time: we have infinitely-many words w that we must try to generate,
so if the language truly were empty, our decision algorithm would never halt.

Instead, we will take a “reverse” approach to testing the emptiness of the grammar’s language. We will
check, for each nonterminal in the grammar, whether that nonterminal is able to generate some sequence of
terminal symbols. If this is the case, then whenever that nonterminal appears in a derivation, we know that
some sequence of terminal symbols will appear later in the derivation.

Our decision algorithm for ECFG works a lot like our decision algorithm for EDFA, except backwards: while
the algorithm for EDFA marked states starting from the initial state and leading to a final state, our algorithm
for ECFG will mark symbols starting from the terminal symbols and returning to the start nonterminal.

Theorem 11. ECFG is decidable.

Proof. Construct a Turing machine MECFG that takes as input hGi, where G is a context-free grammar,
and performs the following steps:

1. Mark all terminal symbols in G.

2. Repeat until no new symbols are marked:

(a) If G has a rule of the form A ! ↵1 . . .↵k and each symbol ↵1, . . . ,↵k has already been marked,
then mark the symbol A.

3. If the start nonterminal of G has not been marked, then accept. Otherwise, reject.

4 Undecidable Problems for Context-Free Languages

Unlike the situation with the class of regular languages, the class of context-free languages has just enough
expressive power to render certain decision problems undecidable. In order to prove that a decision problem is
undecidable for a certain model, we typically need to use a special technique known as a reduction, which we
will study in greater depth later. For now, we will simply present some undecidable problems for context-free
languages and informally intuit why these problems can’t be decided.

4.1 Universality Problem

When we established the decidability of the universality problem for regular languages, we relied on the fact
that the class of regular languages was closed under complement, and this allowed us to use the decidability
of EDFA to decide UDFA.

For context-free languages, we know that ECFG is decidable, so we might be tempted to take a similar
approach to show that UCFG is decidable. However, we run into one big problem: the class of context-free
languages is not closed under complement!

We saw earlier that, if a class of languages is closed under both union and intersection, then it must be
closed under complement by De Morgan’s laws. While it is true that context-free languages are closed under
union, it is not true that they’re also closed under intersection. We can reason about why this is the case
with the following example:

• L1 = {anbncm | m,n � 0} is context-free; and

• L2 = {ambncn | m,n � 0} is also context-free; but

• L1 \ L2 = {anbncn | n � 0} is not context-free.

Thus, the class of context-free languages is not closed under intersection, and it is therefore not closed under
complement. This explains why we can’t use the same technique as we did for regular languages to show
that UCFG is decidable. However, it doesn’t formally prove that UCFG is undecidable; we will leave that proof
for later.

	Decision Problems
	Decidable Problems for Regular Languages
	Membership Problem
	Emptiness Problem
	Universality Problem
	Equivalence Problem

	Decidable Problems for Context-Free Languages
	Membership Problem
	Emptiness Problem

	Undecidable Problems for Context-Free Languages
	Universality Problem
	Equivalence Problem

	Undecidable Problems for Turing Machines
	Membership Problem
	Non-membership Problem

