
St. Francis Xavier University
Department of Computer Science

CSCI 356: Theory of Computing
Lecture 0: Introduction and Mathematical Preliminaries

Fall 2023

1 Introduction

When you think about the theory of computation, what comes to mind?

In fact, what is the “theory of computation”? Computers are real machines; how can we reason abstractly
about something that we use every day?

Imagine that we remove all of the physical constraints of a computer: finite memory, finite storage, finite
compute time. In doing so, we would end up with an ideal computer that can solve any problem we throw
at it. . . or so it would seem.

In this course, we will build up from the simplest possible abstraction of a “computer” to the aforementioned
ideal computer, and in doing so we will learn about the fundamental limits of computation itself. What are
computers truly capable of? What makes some problems harder to solve than others? What sort of problems
can computers solve at all? What sort of problems cannot ever be fully answered by a computer, no matter
how much time or how many resources we devote to them?1

Before we embark on this journey, consider abandoning any preconceived notions of theory being a dry or
boring topic. While it may take a little time to build up our vocabulary and notation, the results we will
study in this course are truly deep and enlightening. Theory is a unique area of study in that it touches
literally every other area of computer science in some way, and you’re invited to find and explore the many
connections between the material we learn here and the material from the other areas of computer science
that interest you.

2 Mathematical Preliminaries

It’s quite an understatement to say that computer science and mathematics are closely related. This is
especially true in theoretical computer science, where we essentially frame the notion of computation itself
in terms of mathematical language. Fortunately, you have likely already learned almost all of the mathematics
that we need to know for this course. Here, we will briefly review the most important notions.

2.1 Sets and Sequences

The concepts underpinning almost everything we will learn in this course are some of the most elementary
in all of mathematics: sets and sequences.

Sets, Properties, and Operations

Let us begin with a very simple definition: that of a set.

Definition 1 (Set). A set is a collection of elements.

1And no, we’re not talking about problems like “what is the answer to the ultimate question of life, the universe, and
everything?” That problem is easily solved by Deep Thought.

CSCI 356: Theory of Computing
Lecture 0, Fall 2023 Page 2

If an element a belongs to a set S, then we write a ∈ S. Otherwise, we write a ̸∈ S. Typically, we do not
repeat elements of a set. If a set needs to contain more than one indistinguishable copy of an element, then
we refer to that set as a multiset.

The cardinality or size of a set S, denoted |S|, is equal to the number of elements of S. If |S| = n for some
finite n ≥ 0, then we say that S is a finite set. Otherwise, we say that S is an infinite set. The set with size
zero is called the empty set, and we denote it by ∅. At the other extreme, the set of all elements we wish to
consider is referred to as the universal set or just the universe, and is occasionally represented by U .

We may define sets either by listing their elements explicitly, or by describing some property or properties
of each element. Naturally, if the set is infinite, we prefer to use the latter method.

Example 2. The set of all positive odd integers less than 20 is

Sodd<20 = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}.

The set of all positive odd integers is

Sodd = {n | n = 2k + 1, k ≥ 0}.

The set of all positive even integers is

Seven = {n | n = 2k, k ≥ 0}.

There are some sets that we use frequently enough to warrant their own notation. The set of natural numbers
is N = {0, 1, 2, . . . }, and the set of integers is Z = {. . . ,−2,−1, 0, 1, 2, . . . }. Computer scientists are also
particularly interested in the set of binary digits B = {0, 1}.

Given two sets S and T , if every element of S is also an element of T , we say that S is a subset of T and we
write S ⊆ T . If, additionally, T contains at least one element that S does not contain, then we say that S
is a proper subset of T and we write S ⊂ T . If no element of S is an element of T and vice versa, then we
say that S and T are disjoint.

Example 3. The set Sodd is a proper subset of N. The set N is a proper subset of Z. The sets Sodd and
Seven are disjoint.

Note that, for all sets S, ∅ ⊆ S ⊆ U . We can also define set equality in terms of subsets: two sets S and T
are equal if both S ⊆ T and T ⊆ S.

The power set of a set S, denoted by P(S), is the set of all subsets of S. If S is a finite set, then |P(S)| = 2|S|.

Example 4. Let S = {1, 2, 3}. Then P(S) = {{∅}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}, and |P(S)| =
23 = 8.

We can define operations on sets. The union of two sets S and T , denoted S ∪ T , is the set containing all
elements that are in S or in T (or in both). The intersection of S and T , denoted S∩T , is the set containing
all elements that are in both S and T . The complement of a set S, denoted SC, is the set containing all
elements from our universe that are not in S. Lastly, the difference of S and T , denoted S \ T , is the set of
all elements of S that are not also in T .

Example 5. Recall the sets Sodd and Seven from our earlier examples. We have that Sodd ∪ Seven = N,
while Sodd ∩ Seven = ∅. Additionally, SC

odd = Seven and vice versa. Finally, N \ Sodd = Seven.

Note that we can define our complement operation in terms of our difference operation by taking SC = U \S.
From this, we also see that UC = ∅ and ∅C = U .

Sequences and Operations

In a set, order does not matter. Thus, for example, the sets {1, 2, 4, 8} and {2, 4, 8, 1} are equivalent. If we
need to preserve some order in a collection of elements, we must instead use a sequence.

CSCI 356: Theory of Computing
Lecture 0, Fall 2023 Page 3

Definition 6 (Sequence). A sequence is an ordered set of elements.

We distinguish notationally between sets and sequences in the following way: sets are surrounded by {braces},
while sequences are surrounded by (parentheses). We occasionally refer to a finite sequence as a tuple, or
as a k-tuple if we know the sequence contains k elements. If we have a sequence of two elements, we may
specifically refer to it as an ordered pair. Additionally, as opposed to sets, we may have repeated elements
in a sequence.

Example 7. The well-known Fibonacci sequence Fn is defined as follows: we start with F0 = F1 = 1, and
for each n ≥ 2, Fn = Fn−1 + Fn−2. This gives us

Fn = (1, 1, 2, 3, 5, 8, 13, 21, 34, . . .).

Example 8. One example of a less well-known sequence is the Thue-Morse sequence Tn, which is defined
as follows: Tn = 0 if the number of ones in the binary representation of n is even, and Tn = 1 if the number
of ones is odd. This gives us

Tn = (0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, . . .).

Sequences of integers are an extremely well-studied topic; the On-line Encyclopedia of Integer Sequences
(https://oeis.org) contains over 340 000 examples of sequences with citations to related papers.

With this notion of sequences, we can define another operation: the Cartesian product. Given two sets S and
T , their Cartesian product, denoted S × T , is the set of all ordered pairs where the first element of the pair
comes from S and the second element comes from T . Formally speaking, S×T = {(a, b) | a ∈ S and b ∈ T}.

Example 9. Let S = {1, 2, 3} and T = {2, 4, 6}. Then

S × T = {(1, 2), (1, 4), (1, 6), (2, 2), (2, 4), (2, 6), (3, 2), (3, 4), (3, 6)}.

We can take the Cartesian product of a set S with itself, and we denote this by S × S = S2. We can also
write S2 × S = S × S2 = S3, and so on. More generally, taking the Cartesian product of a set S with itself
k times is written Sk.

Example 10. The set Z×Z = Z2 yields the set of all ordered pairs of integers, which is used in the Cartesian
coordinate system or the “xy-plane”.

2.2 Relations and Functions

Relations and functions associate elements from one set to elements of another set. The first set (“from”) is
called the domain, and the second set (“to”) is called the range or the codomain.

Relations

A (binary) relation between two sets S and T is simply a set consisting of ordered pairs from the Cartesian
product S × T .

Definition 11 (Binary relation). A binary relation R from a set S to a set T is a subset of S × T .

We generalize from binary relations to k-ary relations in the usual way.

Example 12. Let S = {1, 2, 3}, and take S×S = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}.
The relation of “less than or equal to”, denoted R≤, consists of all ordered pairs (a, b) where a ≤ b; that is,

R≤ = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}.

https://oeis.org

CSCI 356: Theory of Computing
Lecture 0, Fall 2023 Page 4

Example 13. Let P be the set of professors in the Department of Computer Science, let C be the set of
computer science courses, and let T = {fall,winter}. Define a relation Rsched ⊆ P × C × T where a tuple
(p, c, t) ∈ R if Professor p is teaching course c in term t. Then, for example,

{(Smith, 356, fall), (Smith, 355,winter)} ⊆ Rsched.

Finding the complete set of tuples in Rsched is left as an exercise for the Registrar’s Office.

We can define a number of properties of a relation R on a set S depending on which ordered pairs belong to
the relation. Let a1, a2, and a3 each be elements of S. Then

• R is reflexive if, for all a ∈ S, (a, a) ∈ R;

• R is symmetric if, whenever (a1, a2) ∈ R, (a2, a1) ∈ R;

• R is antisymmetric if, whenever (a1, a2) ∈ R and (a2, a1) ∈ R, a1 = a2; and

• R is transitive if, whenever (a1, a2) ∈ R and (a2, a3) ∈ R, (a1, a3) ∈ R.

Note that, despite their names, the properties of symmetry and antisymmetry are not mutually exclusive.
A relation may be both symmetric and antisymmetric.

Functions

A function from a set S to a set T is a special kind of relation where each element of S is mapped to exactly
one element of T . All functions are relations, but not all relations are functions.

Definition 14 (Function). A function f from a set S to a set T is a subset of S × T such that, for each
a ∈ S, there exists exactly one b ∈ T such that (a, b) ∈ f .

If f is a function from a set S to a set T , then we often denote this by the shorthand notation f : S → T . If
(a, b) ∈ f , then we write f(a) = b.

Example 15. The exponential function, f(x) = 2x, is a classic example of a function f : N → N where we
have f(0) = 1, f(1) = 2, f(2) = 4, f(3) = 8, and so on.

Similar to relations, we can define a number of properties of a function f from a set S to a set T .

• f is injective (or one-to-one) if, for all a1, a2 ∈ S where a1 ̸= a2, f(a1) ̸= f(a2);

• f is surjective (or onto) if, for all b ∈ T , there exists a ∈ S such that f(a) = b; and

• f is bijective if it is both injective and surjective.

2.3 Graphs

A graph is a rather straightforward mathematical concept: it is a structure that consists of vertices (or
nodes) connected by edges. Indeed, we often define a graph directly in terms of its vertex set and edge set.

Definition 16 (Graph). A graph G = (V,E) consists of a set of vertices V and a set of edges E, where each
element of E is a pair {u, v} of vertices u, v ∈ V .

Example 17. Each of the following are graphs:

Definition 16 is worded in a very general way, and it allows for things such as multiple edges between the
same vertices or edges joining a vertex to itself (called loops).

Note that Definition 16 also assumes that the set of edges E consists of unordered pairs. By this definition,
if an edge exists between vertices u and v, then another edge implicitly exists between v and u. If we instead

CSCI 356: Theory of Computing
Lecture 0, Fall 2023 Page 5

require that E consists of ordered pairs, then the existence of an edge between vertices u and v does not
necessarily imply the existence of an edge between v and u. We say that such graphs are directed, because
the direction of each edge in the set E matters when we move between vertices.

Example 18. Out of the following graphs, the first graph is undirected and both the second and third
graphs are directed. The third graph is the directed equivalent of the first graph.

If we have two graphs G = (V,E) and H = (V ′, E′) where V ′ ⊆ V and E′ ⊆ E, then we say that H is a
subgraph of G. In other words, a subgraph is a copy of G with vertices or edges (or both) removed. Note
that if we remove a vertex, then we cannot leave behind any edges that touched the removed vertex.

Example 19. The leftmost graph contains the two rightmost graphs as subgraphs.

Given a graph G = (V,E), two vertices u, v ∈ V , and a natural number n, a path of length n from vertex u to
vertex v is a sequence of edges {e1, . . . , en} where e1, . . . , en ∈ E and where e1 = {u,w1}, . . . , en = {wn−1, v}
where w1, . . . , wn−1 ∈ V . Moreover, a path of length n from a vertex u to a vertex v is called a circuit (or
cycle) if u = v and n > 0. If no edge in the path or circuit is included more than once, then we say that the
path or circuit is simple.

Lastly, we say that a graph G = (V,E) is connected if, for every pair of vertices u, v ∈ V , there exists a path
in G between u and v.

Example 20. In the following graph, we see that (among many others) there exist paths a–b, a–c–e–g,
c–e–c–a, and f–g–f ; simple paths b–a–c–e, d–a–b, and f–e–c; and circuits a–b–d–a and e–f–g–e.

a

b

c

d

e

f

g

In this course, however, we will draw graphs a little differently than how a mathematician might draw
them. Many of the graphs we will draw will have labelled vertices—similar to the vertices in the previous
example—as well as labelled edges. Indeed, our graphs will more closely resemble the following figure:

1 2 3

4

a b

c a

b

	Introduction
	Mathematical Preliminaries
	Sets and Sequences
	Relations and Functions
	Graphs

