
St. Francis Xavier University

Department of Computer Science

CSCI 356: Theory of Computing

Lecture 5: Reducibility

Fall 2023

1 Mapping Reductions

In our proof showing that ATM was undecidable, we constructed a Turing machine D that took as input hMi,
the encoding of a Turing machine M, converted that input to the form hM, hMii, and gave that converted
input to another Turing machine H. The machine D then used the output of H to determine what its own
output should be.

If we generalize this notion—that is, the notion of a Turing machine taking an input, converting it into some
other form, and then giving that converted input to another Turing machine— we get a rather interesting
technique that we can use to prove all sorts of decision problems are undecidable. This general notion is
called a mapping reduction or, more generally, just a reduction.1

We encounter examples of reductions in real life every day, whether we realize it or not. For example, we can
reduce the problem of finding a book in the library to the problem of searching for that book in the library’s
catalog system. If we use the catalog to find the book, then we can take the solution to that problem (the
location of the book as listed in the catalog) and apply it to our original problem (finding the location of
the book in the stacks). As another example, students can reduce the problem of staying awake in lectures
to the problem of acquiring a co↵ee from the café.

Computationally speaking, a reduction is a process that converts an instance of some problem X to an
equivalent instance of some other problem Y . Specifically, this conversion is performed by a special kind of
function called a computable function. A computable function is, as the name suggests, a function that can
be computed on a Turing machine.

Definition 1 (Computable function). A function f : ⌃⇤
! ⌃⇤ is computable if there exists some Turing

machine that, given an input word w, halts with f(w) on its input tape and nothing else.

Example 2. The function f(n) = 2n is a computable function. We construct a Turing machine M2n that
takes as input a word consisting of n copies of 1 and performs the following steps:

1. Repeat n times:

(a) Erase the leftmost 1 from the tape.

(b) Move rightward past the remaining 1s in the input word, plus one blank cell, plus any existing 1s
in the output word.

(c) Write a 1 to the rightmost blank cell, then move rightward and write a second 1.

(d) Move leftward to the leftmost 1 in the input word.

With the notion of a computable function, we can now formally define a mapping reduction.

Definition 3 (Mapping reduction). Given two decision problems X and Y , problem X is mapping reducible
to problem Y if there exists a computable function f : ⌃⇤

! ⌃⇤ where, for all w 2 ⌃⇤, w 2 X if and only if
f(w) 2 Y .

1There exist other kinds of reductions, but in this lecture we will only consider mapping reductions, so we will use the word
“reduction” as a shorthand to refer to mapping reductions.

CSCI 356: Theory of Computing
Lecture 5, Fall 2023 Page 2

In other terms, if X reduces to Y , then we can transform every instance w of X to an instance f(w) of Y .
Since w 2 X if and only if f(w) 2 Y , we know that the transformed instance will produce the same output
as the original instance. As a result, we can use a reduction along with a decision algorithm for problem Y

to decide the original problem X.

Diagrammatically, we can visualize a mapping reduction from X to Y in the following way:

Decider for X

Reduction
from X to Y

Decider
for Y

Instance w of X f(w) f(w) 2 Y i↵ w 2 X

We denote a mapping reduction from X to Y by the notation X m Y . Note that the direction of a reduction
is important; if X m Y , then we say that we reduce from X to Y .

If we have a reduction from X to Y , then we can make some claims about the relative di�culty of X based
on what we know about Y , or vice versa. The existence of a reduction from X to Y implies that finding
an answer to X is no more di�cult than finding an answer to Y , or equivalently, finding an answer to Y is
at least as di�cult as finding an answer to X. This is because we must decide Y as an intermediate step
toward deciding X. Thus,

• if X reduces to Y and Y is “easy”, then we know that X must similarly be “easy”; and

• if X reduces to Y and X is “hard”, then we know that Y must similarly be “hard”.

For now, we write “easy” and “hard” in quotation marks, since these notions are still informal. Soon, we will
introduce complexity classes and define more precise notions of easiness and hardness for decision problems.

Focusing on decidability instead of complexity, we can combine the notions of decidable and undecidable
problems with reductions to allow us to characterize one unknown problem in terms of another known
problem.

Theorem 4. If Y is decidable and X m Y , then X is decidable.

Proof. Since Y is decidable, there exists a Turing machine MY that decides instances of Y . Moreover, since
X m Y , there exists a computable function f that reduces instances of X to instances of Y .

We construct a Turing machine MX that takes as input a word w and performs the following steps:

1. Compute f(w).

2. Run MY on input f(w).

3. (a) If MY accepts, then accept.

(b) If MY rejects, then reject.

By taking the contrapositive of Theorem 4, we get the following important result that we will use frequently
in future proofs.

Corollary 5. If X is undecidable and X m Y , then Y is undecidable.

Note, however, that ifX is decidable andX m Y , then we can’t make any conclusions about the decidability
of Y . It’s possible that Y may be undecidable even if X is decidable.

We can make similar claims about semidecidability instead of decidability as well, by using essentially the
same proof as in Theorem 4. The di↵erence here, of course, is that we no longer have the guarantee that
our Turing machine MY will always halt.

CSCI 356: Theory of Computing
Lecture 5, Fall 2023 Page 3

Theorem 6. If Y is semidecidable and X m Y , then X is semidecidable.

Again, taking the contrapositive gives us another important result that will come in handy later.

Corollary 7. If X is not semidecidable and X m Y , then Y is not semidecidable.

2 Undecidable Problems for Turing Machines (Redux)

From our previous lecture, we know that ATM is undecidable. Using this fact, we can prove a number of
other problems for Turing machines undecidable by using our new notion of a reduction.

2.1 Halting Problem

The halting problem is perhaps one of the most famous problems in theoretical computer science. Put simply,
the halting problem asks whether the computation of a Turing machine halts on some given input word. We
can formulate it more precisely as follows:

HALTTM = {hM, wi | M is a Turing machine that halts on input w}.

Note that the formulation of HALTTM looks very similar to that of ATM. However, there exists a subtle
di↵erence between the two problems: ATM asks not only whether a given Turing machine halts, but also
whether it accepts a given input word. By contrast, HALTTM only cares about whether the machine halts.

The halting problem has deep connections and implications for many fields of computer science, not least
of which is software engineering. For instance, some infinite-looping behaviour is desirable in a piece of
software, such as the following simple pseudocode routine that continually polls a hardware input source:

while true do
r CheckSensor(val)

However, programmers typically want to write code that is guaranteed to halt and produce some output,
and most general programming languages are Turing-complete. The undecidability of the halting problem
would therefore imply that no general procedure exists to determine whether a given arbitrary program halts
on a given input.

Note that HALTTM is at least semidecidable, since we can construct a Turing machine that takes as input
some word w and accepts if its computation halts.

Theorem 8. HALTTM is semidecidable.

Proof. Construct a Turing machine MHTM that takes as input hM, wi, where M is a Turing machine and
w is a word, and performs the following steps:

1. Simulate M on input w.

2. If M halts, then accept.

Now, we will prove the undecidability of HALTTM by way of reduction from our known-undecidable problem
ATM. Note that reducing from ATM to HALTTM means that we can turn instances of ATM into instances of
HALTTM, and since we know that ATM is undecidable, this must mean thatHALTTM is similarly undecidable
by Corollary 5.

Theorem 9. HALTTM is undecidable.

Proof. Assume by way of contradiction thatHALTTM is decidable, and suppose thatMH is a Turing machine
that decides HALTTM.

We construct a new Turing machine MA that decides the membership problem ATM. The machine MA

takes as input hM, wi, where M is a Turing machine and w is an input word, and performs the following
steps:

CSCI 356: Theory of Computing
Lecture 5, Fall 2023 Page 4

1. Using the description of M, construct the following Turing machine M
0 that takes as input x and

performs the following steps:

M
01. Run M on x.

M
02. (a) If M accepts, then accept.

(b) If M rejects, then loop forever.

2. Run MH on input hM0
, wi.

3. (a) If MH accepts, then accept.

(b) If MH rejects, then reject.

Therefore, if such a machine MH existed to decide HALTTM, then we could decide ATM as well. However,
we know that ATM is undecidable. Thus, MH must not exist, and so HALTTM must be undecidable.

In our proof that HALTTM is undecidable, we constructed a Turing machine MA that ostensibly decides
ATM and is composed of two parts: a reduction that computes a function f turning instances of ATM into
instances of HALTTM, and a black-box Turing machine MH that decides HALTTM. As we did before, we
can present this construction diagrammatically:

MA

Reduction
from ATM

to HALTTM

MH

hM, wi hM
0
, wi

hM
0
, wi 2 HALTTM

i↵ hM, wi 2 ATM

We don’t know how the black-box Turing machine MH decides HALTTM; we only assume that it exists.
However, we do know how the reduction works—this is step 1 in our procedure! The function f takes the
description of the input Turing machine M and converts it into a new Turing machine M

0 that halts and
accepts an input word x only if M accepts the same input word x.

At this point, you may ask yourself: doesn’t this reduction implicitly decide ATM, since it has to figure out
whether M accepts or rejects its input word? This is a reasonable question, since if the reduction did work
in this way, then we would find ourselves trapped in a snare of circular logic. Fortunately for us, we avoid
such a trap, since the reduction does no deciding on its own: it only modifies the description of M. Namely,

• if hMi has a transition leading to qaccept, then the reduction leaves this transition as is; and

• if hMi has a transition leading to qreject, then the reduction modifies this transition to instead enter a
new “infinite loop” state and render qreject unreachable.

Thus, the reduction only changes how certain transitions of M behave, and it doesn’t consider the output
of M on any particular input word.

Ultimately, our construction establishes that M accepts w if and only if M0 halts on w (i.e., hM, wi 2 ATM

if and only if hM0
, wi 2 HALTTM). At the same time, M does not accept w or M loops forever on w if and

only if M0 loops forever on w (i.e., hM, wi 62 ATM if and only if hM0
, wi 62 HALTTM).

2.2 Emptiness Problem

Let’s continue by considering the familiar emptiness problem for Turing machines, ETM.

Since we already know that ATM is undecidable, we can use this problem in our reduction to ETM. Our goal,
again, is to show that if ETM were decidable, then ATM would also be decidable; an obvious contradiction.

If we take the usual approach—given a Turing machine that decides ETM, we construct a Turing machine
that decides ATM—then a Turing machine’s language being empty implies that a given input word is not

	Mapping Reductions
	Undecidable Problems for Turing Machines (Redux)
	Halting Problem
	Emptiness Problem
	Universality Problem
	Equivalence Problem

	Undecidable Problems for Context-Free Languages (Redux)
	Universality Problem
	Equivalence Problem

